Original Article

Jason Ansel, Han Hong, and Jessie Li*
 OLS and 2SLS in Randomized and Conditionally Randomized Experiments

https://doi.org/10.1515/jbnst-2018-0016

Received 22 February 2017; revised 08 January 2018; accepted 01 February 2018

Abstract

We investigate estimation and inference of the (local) average treatment effect parameter when a binary instrumental variable is generated by a randomized or conditionally randomized experiment. Under i.i.d. sampling, we show that adding covariates and their interactions with the instrument will weakly improve estimation precision of the (local) average treatment effect, but the robust OLS (2SLS) standard errors will no longer be valid. We provide an analytic correction that is easy to implement and demonstrate through Monte Carlo simulations and an empirical application the interacted estimator's efficiency gains over the unadjusted estimator and the uninteracted covariate adjusted estimator. We also generalize our results to covariate adaptive randomization where the treatment assignment is not i.i.d., thus extending the recent contributions of Bugni, F., I.A. Canay, A.M. Shaikh (2017a), Inference Under Covariate-Adaptive Randomization. Working Paper and Bugni, F., I.A. Canay, A.M. Shaikh (2017b), Inference Under Covariate-Adaptive Randomization with Multiple Treatments. Working Paper to allow for the case of non-compliance.

Keywords: big data, data science
JEL Classification: C1, C8, C9

1 Introduction

With the advent of the internet and large online datasets, randomized and conditionally randomized experiments are becoming increasingly common. Despite the vast literature on treatment effect analysis under conditional independence

[^0]and monotonicity assumptions, the surge of recent interest in these experiments (for example, Lin (2013); Freedman (2008); Bugni et al. (2017a); Bugni et al. (2017b)) suggests a need to clarify the relationship to the previous literature and for understanding new results that are relevant in these settings.

This paper contributes to the vast literature on treatment effect analysis (Rosenbaum and Rubin (1983), Imbens and Angrist (1994), among others) by examining the role that covariates play in improving the efficiency of treatment effect estimates. Under the conventional assumption of independent and identically-distributed (i.i.d.) sampling from an infinite population, we provide an extensive analysis of the efficiency gains from including covariates interacted with the binary instrument Z for the treatment. The efficiency analysis applies under both full compliance and partial compliance. The full compliance case, where the treatment indicator D coincides with the binary instrument of treatment eligibility Z, is governed by a model of conditional independence (unconfoundedness) in Rosenbaum and Rubin (1983). The partial compliance case, where D may not be equal to Z, is governed by the local average treatment effect (LATE) model of Imbens and Angrist (1994). Because the LATE model is more general, most of the results in this paper are presented under the partial compliance LATE model. Results for the full compliance model under unconfoundedness are special cases of the LATE model when $D=Z$.

Under the i.i.d. sampling framework, we find that including additional covariates X and their interactions with Z in a 2SLS regression of the outcome Y on the treatment indicator D will weakly improve efficiency of the estimator for the LATE parameter. Including the covariates X only, without interacting with the instrument Z, might improve or reduce efficiency. The intuition for the efficiency gains from including the interaction term comes from examining its relationship with the sieve estimator for ATE as discussed in Chen, Hong and Tarozzi (CHT 2008) and for LATE as discussed in Frolich (2006). If X were replaced with a sieve expansion then the interacted estimator coincides with the sieve estimator.

We also extend our efficiency comparisons to covariate adaptive randomization schemes. Following Bugni et al. (2017a) (BCS 2017a) and Bugni et al. (2017b) (BCS 2017b), we admit strata-level differences in the randomization scheme, perform efficiency comparisons, and extend their results to allow for noncompliance. In general, the interacted estimator is more efficient than the unadjusted and uninteracted estimators, except when the sampling scheme exhibits strong balance, such as in stratified block randomization, in which case the interacted estimator is equally efficient as the uninteracted covariate adjusted estimator.

In addition to providing Monte Carlo simulations comparing the standard errors of the various estimators, we also include an empirical application. The data come from GoDaddy, a domain name registrar responsible for managing
sales of internet domain names through a variety of formats such as auctions and direct negotiation between buyers and sellers. We observe a sample of auctions which underwent a simple randomized experiment in which some auctions were assigned a valuation determined by a machine learning algorithm for the domain name that is being sold. The question is whether the act of seeing the valuation for the domain name would induce bidders to submit higher bids and thereby raise the sale price. We find that there is indeed a positive effect of seeing the valuation on the sale price, and we show how the standard error of the average treatment effect can decrease by including covariates interacted with the treatment.

In section 2, we present the model, the estimators, efficiency comparisons, and consistent inference under the assumption of i.i.d. sampling. In section 3, we discuss semiparametric efficiency and semiparametric estimation methods. Section 4 generalizes our results to covariate adaptive randomization. We provide Monte Carlo simulations in section 5 and the empirical application in section 6. Section 7 concludes.

2 Theoretical model and parametric efficiency

Consider the causal LATE model of Imbens and Angrist (1994), and its special case the conditional independence (CI) model of Rosenbaum and Rubin (1983). The counterfactual outcomes are denoted Y_{1}, Y_{0}, and let $Z \in\{0,1\}$ be the dummy instrumental variable indicating the eligibility for treatment. D_{1} and D_{0} are the counterfactual treatment statuses corresponding to $Z=1$ and $Z=0$ respectively. The sample contains Y, D, Z, and possibly additional covariates X, such that

$$
\begin{aligned}
& D=D_{1} Z+D_{0}(1-Z) \\
& Y=Y_{1} D+Y_{0}(1-D)=Y_{1}^{*} Z+Y_{0}^{*}(1-Z)
\end{aligned}
$$

where $Y_{1}^{*}=Y_{1} D_{1}+Y_{0}\left(1-D_{1}\right)$ and $Y_{0}^{*}=Y_{1} D_{0}+Y_{0}\left(1-D_{0}\right)$. We begin with the usual i.i.d sampling with replacement framework:

Assumption 1 (i.i.d sampling). $Y_{1 i}, Y_{0 i}, D_{1 i}, D_{0 i}, X_{i}, Z_{i}$ are drawn i.i.d from an underlying population.

Both the CI and LATE models are assumed to satisfy two assumptions. First, the instrumental variable is independent of the potential outcomes, counterfactual treatment statuses, and covariates. Second, the counterfactual treatment status corresponding to $Z=1$ is weakly greater than the counterfactual treatment status corresponding to $Z=0$ with probability 1 and strictly greater with positive probability.

Assumption 2 (CI.1, LATE.1, Independence). $Y_{1}, Y_{0}, D_{1}, D_{0}, X \perp Z$.
Assumption 3 (CI.2, LATE.2, Monotonicity). $P\left(D_{1} \geq D_{0}\right)=1$, and $P\left(D_{1}>D_{0}\right)>0$.
The CI model additionally satisfies
Assumption 4 (CI.3, Full compliance). $D_{1}=1$ and $D_{0}=0$, or $D=Z$.
The CI Model often is stated without reference to Z since $D=Z$.
Assumption 5 (CI.1-3). $Y_{1}, Y_{0}, X \perp D$.
The population LATE parameter of interest is given by Imbens and Angrist (1994):

$$
\begin{equation*}
\beta_{0}=E\left(Y_{1}-Y_{0} \mid D_{1}>D_{0}\right)=\operatorname{Cov}(Y, Z) / \operatorname{Cov}(D, Z)=\frac{(E(Y \mid Z=1)-E(Y \mid Z=0))}{(E(D \mid Z=1)-E(D \mid Z=0))} \tag{1}
\end{equation*}
$$

which becomes the average treatment effect (ATE) parameter under CI:

$$
\beta_{0}=E\left(Y_{1}-Y_{0}\right)=(E(Y \mid Z=1)-E(Y \mid Z=0)) .
$$

Let $\hat{\beta}_{1}$ be the coefficient on D when running 2SLS of Y on D instrumented by Z :

$$
\hat{\beta}_{1}=\sum_{i=1}^{n} Y_{i}\left(Z_{i}-\bar{Z}\right) / \sum_{i=1}^{n} D_{i}\left(Z_{i}-\bar{Z}\right)
$$

This corresponds to the following Stata command:

```
ivreg Y (D=Z)
```

When $Z=D, \hat{\beta}_{1}$ becomes the coefficient on D in an OLS regression of Y on D :

```
reg Y D
```

In both the CI and the LATE models, it is well known that $\hat{\beta}_{1}$ is consistent for β_{0} and the nominal (robust) OLS and 2SLS standard errors consistently estimate the asymptotic variance for $\sqrt{n}\left(\hat{\beta}_{1}-\beta_{0}\right)$. Next, consider applying OLS or 2SLS to regress Y_{i} on D_{i} and X_{i}, where D is instrumented by Z. Let $\hat{\beta}_{2}$ be the coefficient on D_{i} in

```
ivreg Y (D=Z) X or reg Y D X
```

It can be shown that $\hat{\beta}_{2}$ is consistent for β_{0} under both CI and LATE, but $\hat{\beta}_{2}$ can be either more or less efficient than $\hat{\beta}_{1}$. The nominal (robust) OLS and 2SLS standard errors remain valid for $\hat{\beta}_{2}$.

Finally, consider using OLS or 2SLS to regress Y_{i} on D_{i} and X_{i}, and the interaction between $X_{i}-\bar{X}$ and Z_{i}. Let $\hat{\beta}_{3}$ be the coefficient on D in

```
ivreg \(Y(D=Z) \quad X \quad Z *(X-\bar{X})\) or reg \(Y D X D *(X-\bar{X})\)
```

It can be shown that $\hat{\beta}_{3}$ is consistent for β_{0} under both CI and LATE, and $\hat{\beta}_{3}$ is always no less efficient than $\hat{\beta}_{1}$ and $\hat{\beta}_{2}$.

Under i.i.d. sampling, the efficiency comparison holds under both the correlation model and the causal model.

Assumption 6 (correlation model). Y and X have finite $\delta>4$ moments, and $X \perp Z$.

Theorem 1. Under Assumptions 1 and 6, for $j=1,2,3$,

$$
\sqrt{n}\left(\hat{\beta}_{j}-\beta_{0}\right) \xrightarrow{d} N\left(0, \sigma_{j}^{2}\right), \quad \text { where } \sigma_{3} \leq \sigma_{k} \text { for } k=1,2 .
$$

Assumption 7 (causal model). $Y_{1 i}, Y_{0 i}$ and X_{i} have finite $4+\delta$ moments.

Corollary 1. Theorem 1 holds under Assumptions 1, 2, 3, and 7.

These results include the model in Lin (2013) as a special case when $Z_{i}=D_{i}$, but differ in that we are concerned about superpopulation asymptotics while Lin (2013) is not concerned about the variation in X_{i}. Adding covariates or functions of covariates into the interaction estimator $\hat{\beta}_{3}$ will also further improve efficiency. Let $\hat{\beta}_{4}$ be defined as $\hat{\beta}_{3}$ except that we replace X with a subset of it denoted X_{S} :
ivreg $Y(\mathrm{D}=\mathrm{Z}) X_{S} \mathrm{Z} *\left(X_{S}-\bar{X}_{S}\right)$ or reg $\mathrm{Y} \mathrm{D} X_{S} \mathrm{D} *\left(X_{S}-\bar{X}_{S}\right)$

Corollary 2. Under the conditions of either Theorem 1 or Corollary 1,

$$
\sqrt{n}\left(\hat{\beta}_{4}-\beta_{0}\right) \xrightarrow{d} N\left(0, \sigma_{4}^{2}\right), \quad \text { wherea }_{4} \geq \sigma_{3} .
$$

For $\hat{\beta}_{1}$ and $\hat{\beta}_{2}$, nominal robust 2SLS standard errors (when $D \neq Z$, and robust OLS standard errors when $Z=D$) reported by Stata are asymptotically valid. In contrast, robust 2SLS standard errors for $\hat{\beta}_{3}$ underestimate its asymptotic variance. In particular, nominal robust standard errors for $\hat{\beta}_{k}, k=1,2,3$, denoted $\hat{\sigma}_{k}^{2}$, are given by the $(2,2)$ element of $\hat{A}^{-1} \hat{B} \hat{A}^{-1}$, where

$$
\begin{equation*}
\hat{A}=\frac{1}{n} \sum_{i=1}^{n} \bar{W}_{i k} \bar{V}_{i k} \quad \hat{B}=\frac{1}{n} \sum_{i=1}^{n} \hat{\epsilon}_{i k}^{2} \bar{W}_{i k} \bar{W}_{i k}^{\prime} . \tag{2}
\end{equation*}
$$

In the above, $\bar{W}_{i 1}=\left(1 Z_{i}\right)^{\prime}, \bar{V}_{i 1}=\left(1 D_{i}\right), \bar{W}_{i 2}=\left(1 Z_{i} X_{i}\right), \bar{V}_{i 2}=\left(1 D_{i} X_{i}\right), \bar{W}_{i 3}=$ $\left(1 Z_{i} X_{i} Z_{i}\left(X_{i}-\bar{X}\right)\right), \bar{V}_{i 3}=\left(1 D_{i} X_{i} Z_{i}\left(X_{i}-\bar{X}\right)\right)$, and $\hat{\epsilon}_{i k}$ is the regression residual corresponding to $\hat{\beta}_{k}$. Furthermore, define

$$
\begin{equation*}
\bar{\epsilon}_{i 3}=\left(Z_{i}-\hat{p}_{z}\right) \hat{\epsilon}_{i 3}+\hat{p}_{z}\left(1-\hat{p}_{z}\right) \hat{\phi}\left(X_{i}-\bar{X}\right) . \tag{3}
\end{equation*}
$$

where $\hat{\phi}$ are the coefficients on $Z_{i}\left(X_{i}-\bar{X}\right)$ and $\hat{p}_{z}=\bar{Z}$. For $\widehat{\operatorname{Cov}_{Z, D}}=\frac{1}{n} \sum_{i=1}^{n} Z_{i} D_{i}-$ $\bar{Z} \bar{D}$,

$$
\begin{equation*}
\bar{\sigma}_{3}^{2}=\widehat{\operatorname{Cov}}_{Z, D}^{-2} \frac{1}{n} \sum_{i=1}^{n} \bar{\epsilon}_{i 3}^{2} \tag{4}
\end{equation*}
$$

Corollary 3. Under the conditions of either Theorem 1 or Corollary 1, $\hat{\sigma}_{k}^{2} \xrightarrow{p} \sigma_{k}^{2}$ for $k=1,2$, and plim $\hat{\sigma}_{3}^{2} \leq \sigma_{3}^{2}$. But $\bar{\sigma}_{3}^{2} \xrightarrow{p} \sigma_{3}^{2}$.

It is possible to give a GMM interpretation to the interactive estimator $\hat{\beta}_{3}$. By independence between Z and X, the moment conditions $E \phi_{i}\left(\alpha_{0}, \beta_{0}, \mu_{0 x}\right)=0$ hold, where

$$
\phi_{i}\left(\alpha, \beta, \mu_{\chi}\right)=\binom{Z_{i}}{1-Z_{i}} \otimes\binom{y_{i}-\alpha-\beta D_{i}}{X_{i}-\mu_{x}}
$$

Let $\widehat{\operatorname{Var}}\left(\phi_{i}(\cdot)\right)=\operatorname{Var}\left(\phi_{i}\left(\alpha_{0}, \beta_{0}, \mu_{0 x}\right)\right)+o_{P}(1)$ and $\hat{\phi}\left(\alpha, \beta, \mu_{x}\right)=\frac{1}{n} \sum_{i=1}^{n} \phi_{i}\left(\alpha, \beta, \mu_{x}\right)$. It can then be shown that the GMM estimator, defined through

$$
\begin{equation*}
\left(\hat{\alpha}, \hat{\beta}_{G M M}, \hat{\mu}_{x}\right)=\underset{\alpha, \beta, \mu_{x}}{\arg \min _{x}} \hat{\phi}\left(\alpha, \beta, \mu_{x}\right)^{\prime} \widehat{\operatorname{Var}}\left(\phi_{i}\left(\alpha, \beta, \mu_{x}\right)\right)^{-1} \hat{\phi}\left(\alpha, \beta, \mu_{x}\right) \tag{5}
\end{equation*}
$$

coincides asymptotically with the interactive IV estimator $\hat{\beta}_{3}$.
Proposition 1. $\hat{\beta}_{G M M}=\hat{\beta}_{3}+o_{P}\left(\frac{1}{\sqrt{n}}\right)$.

3 Semiparametric estimation and efficiency

The asymptotic variance of the interactive estimator $\hat{\beta}_{3}$ decreases when more regressors are added. If we replace X_{i} by its sieve expansion, denoted $V_{i}=V\left(X_{i}\right)$,
where $\operatorname{dim}\left(V_{i}\right) \rightarrow \infty$ as $n \rightarrow \infty$ at a suitable rate, then our interactive estimator is exactly the sieve ATE estimate in Chen, Hong and Tarozzi (CHT 2008) when $D=Z$, and is a sieve version of the average LATE estimator of Frolich (2006) when $D \neq Z$. We denote by $\hat{\beta}_{\infty}$ our interactive estimator using $V_{i}=V\left(X_{i}\right)$ in place of X_{i}.

We show this equivalence first for $D=Z$. The CHT 2008 ATE estimator uses two linear regressions:

$$
\begin{aligned}
\left(1-D_{i}\right) Y_{i} & =\left(1-D_{i}\right)\left[\hat{\gamma}_{0}+\hat{\vartheta}_{0} V_{i}+e_{0 i}\right] \\
D_{i} Y_{i} & =D_{i}\left[\hat{\gamma}_{1}+\hat{\vartheta}_{1} V_{i}+e_{1 i}\right]
\end{aligned}
$$

and is based on the following relations:

$$
\begin{aligned}
\hat{E}\left(Y_{0} \mid X=x\right) & =\hat{\gamma}_{0}+\hat{\vartheta}_{0} V(x) \quad \hat{E}\left(Y_{1} \mid X=x\right)=\hat{\gamma}_{1}+\hat{\vartheta}_{1} V(x) \\
\widehat{A T E} & =\frac{1}{n} \sum_{i=1}^{n}\left(\hat{E}\left(Y_{1} \mid X=X_{i}\right)-\hat{E}\left(Y_{0} \mid X=X_{i}\right)\right) \\
& =\frac{1}{n} \sum_{i=1}^{n}\left(\hat{\gamma}_{1}+\hat{\vartheta}_{1} V_{i}-\hat{\gamma}_{0}-\hat{\vartheta}_{0} V_{i}\right)=\hat{\gamma}_{1}+\hat{\vartheta}_{1} \bar{V}-\hat{\gamma}_{0}-\hat{\vartheta}_{0} \bar{V} .
\end{aligned}
$$

Our interactive regression can be rewritten as

$$
Y_{i}=\hat{\alpha}+\hat{\beta}_{\infty} D_{i}+\hat{\eta} V_{i}+\hat{\phi} D_{i}\left(V_{i}-\bar{V}\right)=\hat{\alpha}+\hat{\eta} V_{i}+D_{i}\left(\hat{\beta}_{\infty}-\hat{\phi} \bar{V}+\hat{\phi} V_{i}\right) .
$$

The following equalities hold between the two different parameterizations:

$$
\hat{\gamma}_{0}=\hat{\alpha}, \quad \hat{\vartheta}_{0}=\hat{\eta}, \quad \hat{\gamma}_{1}=\hat{\alpha}+\hat{\beta}_{\infty}-\hat{\phi} \bar{V}, \quad \hat{\vartheta}_{1}=\hat{\eta}+\hat{\phi} .
$$

Therefore the following equivalence relation holds:

$$
\begin{equation*}
\widehat{A T E}=\hat{\gamma}_{1}+\hat{\vartheta}_{1} \bar{V}-\hat{\gamma}_{0}-\hat{\vartheta}_{0} \bar{V}=\hat{\alpha}+\hat{\beta}_{\infty}-\hat{\phi} \bar{V}+(\hat{\eta}+\hat{\phi}) \bar{V}-\hat{\alpha}-\hat{\eta} \bar{V}=\hat{\beta}_{\infty} \tag{6}
\end{equation*}
$$

In the special case when V_{i} are cluster dummy variables, eq. (6) is identical to a fully saturated regression of the outcome on the treatment and cluster dummies with full interactions and computes the cluster-weighted average of the clusterlevel estimates. More precisely, let $V_{i}(s)=1\left(X_{i} \in S\right)$ for all clusters $s=1, \ldots, S$ and let $\bar{V}(s)=\frac{1}{n} \sum_{i=1}^{n} 1\left(X_{i} \in s\right)$. Then eq. (6) becomes

$$
\begin{equation*}
\hat{\gamma}_{1}+\sum_{s=2}^{S} \hat{\vartheta}_{1 s} \bar{V}(s)-\left(\hat{\gamma}_{0}+\sum_{s=2}^{S} \hat{\vartheta}_{0 s} \bar{V}(s)\right) \tag{7}
\end{equation*}
$$

Let $\hat{\xi}_{11}=\hat{\gamma}_{1}, \hat{\xi}_{01}=\hat{\gamma}_{0}, \hat{\xi}_{1 s}=\hat{\gamma}_{1}+\hat{\vartheta}_{1 s}$, and $\hat{\xi}_{0 s}=\hat{\gamma}_{0}+\hat{\vartheta}_{0 s}$ for $s=2, \ldots, S$. Then

$$
\begin{equation*}
e q .(7)=\sum_{s=1}^{S}\left(\hat{\xi}_{1 s}-\hat{\xi}_{0 s}\right) \frac{\sum_{i=1}^{n} 1\left(X_{i} \in s\right)}{n} . \tag{8}
\end{equation*}
$$

But $\hat{\xi}_{1 s}-\hat{\xi}_{0 s}$ is exactly the difference in the cluster s levels in Y_{i} for $D_{i}=1$ and $D_{i}=0$. This estimator achieves the semiparametric efficiency bound when only cluster indicators are observable, but is not fully efficient when the covariates X_{i} are also observable.

We now consider the LATE model when $D \neq Z$, and show that the interactive IV estimator $\hat{\beta}_{\infty}$ is a sieve implementation of the semiparametrically efficient average LATE estimator in Frolich (2006), which takes the form of

$$
\widehat{\operatorname{AvgLA} T E}=\frac{\frac{1}{n} \sum_{i=1}^{n}\left(\hat{E}\left(Y \mid Z=1, X=X_{i}\right)-\hat{E}\left(Y \mid Z=0, X=X_{i}\right)\right)}{\frac{1}{n} \sum_{i=1}^{n}\left(\hat{E}\left(D \mid Z=1, X=X_{i}\right)-\hat{E}\left(D \mid Z=0, X=X_{i}\right)\right)} .
$$

A sieve implementation of this estimator is based on the following relations:

$$
\begin{array}{ll}
\hat{E}(Y \mid Z=0, X=x)=\hat{\gamma}_{0}+\hat{\vartheta}_{0} V(x), & \hat{E}(Y \mid Z=1, X=x)=\hat{\gamma}_{1}+\hat{\vartheta}_{1} V(x) \\
\hat{E}(D \mid Z=0, X=x)=\hat{\tau}_{0}+\hat{\zeta}_{0} V(x), & \hat{E}(D \mid Z=1, X=x)=\hat{\tau}_{1}+\hat{\zeta}_{1} V(x),
\end{array}
$$

and uses the following four linear regressions:

$$
\begin{array}{ll}
\left(1-Z_{i}\right) Y_{i}=\left(1-Z_{i}\right)\left[\hat{\gamma}_{0}+\hat{\vartheta}_{0} V_{i}+e_{0 i}\right], & Z_{i} Y_{i}=Z_{i}\left[\hat{\gamma}_{1}+\hat{\vartheta}_{1} V_{i}+e_{1 i}\right] \\
\left(1-Z_{i}\right) D_{i}=\left(1-Z_{i}\right)\left[\hat{\tau}_{0}+\hat{\zeta}_{0} V_{i}+e_{0 i}\right], & Z_{i} D_{i}=Z_{i}\left[\hat{\tau}_{1}+\hat{\zeta}_{1} V_{i}+e_{1 i}\right] . \tag{9}
\end{array}
$$

We can then write

$$
\begin{equation*}
\widehat{\operatorname{AvgLA}} T E=\frac{\hat{\gamma}_{1}-\hat{\gamma}_{0}+\left(\hat{\vartheta}_{1}-\hat{\vartheta}_{0}\right)^{\prime} \bar{V}}{\hat{\tau}_{1}-\hat{\tau}_{0}+\left(\hat{\zeta}_{1}-\hat{\zeta}_{0}\right)^{\prime} \bar{V}} . \tag{10}
\end{equation*}
$$

Proposition 2. AvgLATE $=\hat{\beta}_{\infty}$ for the interactive instrumental variable estimator $\hat{\beta}_{\infty}$.

When V_{i} are cluster indicators, the LATE analog of eq. (8) becomes

$$
\begin{equation*}
\hat{\beta}_{\infty}=\frac{\sum_{s=1}^{S}\left(\hat{\zeta}_{1 s}-\hat{\xi}_{0 s}\right) \frac{\sum_{i=1}^{n} 1\left(X_{i} \in s\right)}{n}}{\sum_{s=1}^{S}\left(\hat{\zeta}_{1 s}-\hat{\zeta}_{0 s}\right) \frac{\sum_{i=1}^{n} 1\left(X_{i} \epsilon s\right)}{n}}, \tag{11}
\end{equation*}
$$

where $\hat{\xi}_{1 s}-\hat{\xi}_{0 s}$ is exactly the difference in the cluster s levels in Y_{i} between $Z_{i}=1$ and $Z_{i}=0$, and $\hat{\zeta}_{1 s}-\hat{\zeta}_{0 s}$ is the difference in the cluster s levels in D_{i} between $Z_{i}=1$ and $Z_{i}=0$. This estimator achieves the semiparametric efficiency bound when only cluster indicators are observable, but is not fully efficient when the covariates X_{i} are also observable. Under CI where $D=Z$, semiparametric efficiency bounds are calculated in, among others, Hahn (1998) and Chen et al. (2008). In the more general LATE case when $D \neq Z$, the LATE efficiency bound is calculated in Frolich (2006) as well as Hong and Nekipelov (2010) (Lemma 1 and Theorem 4). These results from the previous literature confirm the following efficiency comparison:

Proposition 3. $\sqrt{n}\left(\hat{\beta}_{\infty}-\beta_{0}\right) \xrightarrow{d} N\left(0, \sigma_{\infty}^{2}\right)$, where $\sigma_{\infty}^{2} \leq \sigma_{3}^{2}$.

Under suitable regularity conditions, a consistent estimate of σ_{∞}^{2} can be obtained by an analog of eq. (3) and eq. (4) when X_{i} and \bar{X} are replaced by sieve expansions V_{i} and \bar{V} :

$$
\bar{\epsilon}_{i \infty}=\left(Z_{i}-\hat{p}_{z}\right) \hat{\epsilon}_{i \infty}+\hat{p}_{z}\left(1-\hat{p}_{z}\right) \hat{\phi}^{\prime}\left(V_{i}-\bar{V}\right) .
$$

where $\hat{\phi}$ are the coefficients on $Z_{i}\left(V_{i}-\bar{V}\right)$ and $\hat{p}_{z}=\bar{Z}$. For $\widehat{\operatorname{Cov}_{Z, D}}=\frac{1}{n} \sum Z_{i} D_{i}-\bar{Z} \bar{D}$, a consistent estimate of σ_{∞}^{2} is given by

$$
\bar{\sigma}_{\infty}^{2}=\widehat{\operatorname{Cov}}_{Z, D}^{-2} \frac{1}{n} \sum_{i=1}^{n} \bar{\epsilon}_{i \infty}^{2}
$$

4 Covariate adaptive randomization

We now move beyond the i.i.d. sampling framework and consider the covariate adaptive randomization scheme discussed in Bugni et al. (2017a) and Bugni et al. (2017a) (BCS 2017a, BCS 2017b) where units are first assigned to a finite number of strata using baseline covariates and then are assigned treatment status using the instrument. Unlike BCS 2017b, we do not allow for multiple treatments, so we will describe how our notation differs from BCS 2017a.

1. Our treatment variables are D_{1} and D_{0} corresponding to $Z=1$ and $Z=0$ respectively while BCS 2017a use A to denote the treatment in the case where $D=Z$.
2. Our baseline covariates which determine stratum membership are denoted by X while BCS 2017a use Z.
3. Our target proportion of units assigned to treatment in each stratum is denoted by p_{z} while BCS 2017a use π.

We also note that our notation will differ from chapter 9 of Imbens and Rubin (2015) in the following ways:

1. Our treatment variables are D_{1} and D_{0} while Imbens and Rubin (2015) assume $D=Z$ and use W to denote the treatment.
2. We follow BCS 2017a and use $S_{i} \in\{1,2, \ldots, S\}$ to denote the stratum of unit i while Imbens and Rubin (2015) define a variable $B_{i}(j)$ which is an indicator for unit i belonging in stratum j for $j \in\{1, \ldots, J\}$.
3. We use $p_{z}(s)$ to denote the proportion of treated units in stratum s while Imbens and Rubin (2015) use $e(j)$.

With more than one stratum, BCS 2017b have already shown that interacting the instrument with strata indicators improves efficiency, and they allow for different conditional targeted randomization probabilities across strata. Our contribution is twofold. First we extend BCS 2017a and BCS 2017b to allow for noncompliance by operating under the LATE framework and IV regression. Second we show how additional covariates beyond strata indicators further enhance efficiency and derive an efficient semiparametric sieve based estimator. Results in the previous sections correspond to the single stratum case and coincide in the special case of $D=Z$ with simple OLS and adjusted but non-interacted OLS.

Similar to BCS 2017a, consider a sampling scheme where ($Y_{1 i}, Y_{0 i}, D_{1 i}, D_{0 i}, X_{i}$) are drawn i.i.d from a superpopulation and are first assigned to a finite set of clusters using a function $S: \operatorname{supp}\left(X_{i}\right) \rightarrow \mathcal{S}$ based on the value of X_{i} before treatment status is assigned using Z_{i}. As in BCS 2017a, let $S_{i}=S\left(X_{i}\right), S^{(n)}=\left(S_{1}, \ldots, S_{n}\right)$, $Z^{(n)}=\left(Z_{1}, \ldots, Z_{n}\right), p(s)=P\left(S_{i}=s\right)$, and define a measure of imbalance in stratum s relative to the target proportion p_{z} as

$$
Z_{n}(s)=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} 1\left(X_{i} \in s\right)\left(Z_{i}-p_{z}\right)
$$

Assumption 8.

1. $Z^{(n)} \perp\left(Y_{1 i}, Y_{0 i}, D_{1 i}, D_{0 i}, X_{i}, i=1, \ldots, n\right) \mid S^{(n)}$.
2. $P\left(Z_{i}=1 \mid S^{(n)}\right)=p_{z}+O_{\text {a.s. }}\left(\frac{1}{n}\right)$ for all $1 \leq i \leq n$.
3. $\left\{Z_{n}(s)_{s \in \mathcal{S}} \mid S^{(n)}\right\} \xrightarrow{d} N\left(0, \Sigma_{Z}\right)$, where $\Sigma_{Z}=\operatorname{diag}\left\{\sigma_{Z}^{2}(s): s \in \mathcal{S}\right\}$ and

$$
\sigma_{Z}^{2}(s)=p(s) \tau(s) \quad \text { and } \quad 0 \leq \tau(s) \leq p_{z}\left(1-p_{z}\right), \forall s \in \mathcal{S} .
$$

$\tau(s)$ is a strata-specific scalar that equals 0 for all $s \in \mathcal{S}$ in the case of strong balance. An example of a sampling scheme that achieves strong balance is stratified block randomization (see example 3.4 of BCS 2017a). Assumption 8 is modeled after Assumption 2.2 in BCS 2017a but is different. It allows for non-compliance in the sense that $D \neq Z$.

Consider first the simple IV estimator $\hat{\beta}_{1}$ with instrument Z and regressor D. Define for $t_{1 i}=Y_{1 i}^{*}-\beta_{0} D_{1 i}$ and $t_{0 i}=Y_{0 i}^{*}-\beta_{0} D_{0 i}$,

$$
\omega_{i}=\left[\frac{t_{1 i}-E t_{1 i}}{p_{z}}+\frac{t_{0 i}-E t_{0 i}}{1-p_{z}}\right] \text { and } \omega(s)=E\left[\omega_{i} \mid X_{i} \in s\right] .
$$

Proposition 4. Under Assumption 8, $\sqrt{n}\left(\hat{\beta}_{1}-\beta_{0}\right) \xrightarrow{d} N\left(0, \sigma_{1 f s 1}^{2}+\sigma_{1 f s 2}^{2}+\sigma_{\infty}^{2}\right)$, where

$$
\begin{aligned}
\sigma_{1 f s 1}^{2} & =\frac{p_{z}\left(1-p_{z}\right)}{P\left(D_{1}>D_{0}\right)^{2}} \sum_{s=1}^{S} p(s) \operatorname{Var}\left(\omega_{i} \mid s\right), \sigma_{1 f s 2}^{2}=\frac{\sum_{s=1}^{S} \omega(s)^{2} p(s) \tau(s)}{P\left(D_{1}>D_{0}\right)^{2}}, \\
\sigma_{\infty}^{2} & =\frac{\operatorname{Var}\left[t_{1 i}-t_{0 i}\right]}{P\left(D_{1}>D_{0}\right)^{2}} .
\end{aligned}
$$

Furthermore, plim $\hat{\sigma}_{1}^{2} \geq \sigma_{1 f s}^{2}+\sigma_{\infty}^{2}$ where the inequality is strict when $\tau(s)<$ $p_{z}\left(1-p_{z}\right)$.

Therefore, 2SLS nominal standard errors are in general conservatively valid and only asymptotically accurate when $\tau(s)=p_{z}\left(1-p_{z}\right)$. We note that Proposition 4 has already been shown in Theorem 4.1 of BCS 2017a when $D=Z$. Our contribution is to extend their results to the case of $D \neq Z$.

Next consider the adjusted regression $\hat{\beta}_{2}$, where X_{i} is replaced by cluster dummies

$$
V_{i}=\left\{1\left(X_{i} \in s\right), s \in \mathcal{S}\right\} .
$$

Proposition 5. Under Assumption 8, $\sqrt{n}\left(\hat{\beta}_{2}-\beta_{0}\right) \xrightarrow{d} N\left(0, \sigma_{2 f s 1}^{2}+\sigma_{2 f s 2}^{2}+\sigma_{\infty}^{2}\right)$, where $\sigma_{2 f s 1}^{2}=\sigma_{1 f s 1}^{2}$, and

$$
\sigma_{2 f s 2}^{2}=P\left(D_{1}>D_{0}\right)^{-2} \sum_{s=1}^{S} p(s) \tau(s)\left(\frac{1-2 p_{z}}{p_{z}\left(1-p_{z}\right)}\left(t_{1}(s)-t_{0}(s)\right)\right)^{2} .
$$

where $t_{1}(s)=E\left(t_{1 i} \mid X_{i} \in s\right)$ and $t_{0}(s)=E\left(t_{0 i} \mid X_{i} \in s\right)$. Furthermore, plim $\hat{\sigma}_{2}^{2}=\sigma_{2 f s 1}^{2}+$ $\bar{\sigma}_{2 f s 2}^{2}+\sigma_{\infty}^{2}$, where $\bar{\sigma}_{2 f s 2}^{2} \geq \sigma_{2 f s 2}^{2}$,

$$
\bar{\sigma}_{2 f s 2}^{2}=P\left(D_{1}>D_{0}\right)^{-2} \sum_{s=1}^{S} p(s) \frac{1}{p_{z}\left(1-p_{z}\right)}\left(\left(1-2 p_{z}\right)\left(t_{1}(s)-t_{0}(s)\right)\right)^{2} .
$$

Consequently, nominal 2SLS standard errors are generally conservative and only asymptotically valid when either $\tau(s) \equiv p_{z}\left(1-p_{z}\right)$ or $p_{z}=\frac{1}{2}$. We emphasize that the case of $D=Z$ has already been shown in BCS 2017a. Our contribution is only to allow for noncompliance with $D \neq Z$.

Proposition 6. Under Assumption 8, $\sqrt{n}\left(\hat{\beta}_{3}-\beta_{0}\right) \xrightarrow{d} N\left(0, \sigma_{3 f s}^{2}+\sigma_{\infty}^{2}\right)$, where $\sigma_{3 f s}^{2}=\sigma_{2 f s 1}^{2}$. Furthermore, plim $\hat{\sigma}_{3}^{2} \in\left[\sigma_{3 f s}^{2}, \sigma_{3 f s}^{2}+\sigma_{\infty}^{2}\right]$.

The asymptotic variance of $\hat{\beta}_{3}$ is smaller than the variances of $\hat{\beta}_{1}$ and $\hat{\beta}_{2}$ by the amount $\sigma_{1 f s 2}^{2}$ and $\sigma_{2 f 52}^{2}$, respectively, except in the cases of $p_{z}=1 / 2$ or $\tau(s)=0$, in which case the asymptotic variances of $\hat{\beta}_{3}$ and $\hat{\beta}_{2}$ are the same. As before the case of $D=Z$ in Proposition 6 follows from results that have already been shown in BCS 2017b. Our contribution is to allow for noncompliance.

In addition, even if the targeted randomization probability is specific to each cluster, namely $p_{z}(s)$ can differ across clusters, if we replace Assumption 8.2 by

$$
P\left(Z_{i}=1 \mid S^{(n)}, X_{i} \in s\right)=p_{z}(s)+O_{a . s .}\left(\frac{1}{n}\right) \quad \text { and } \quad \tau(s) \leq p_{z}(s)\left(1-p_{z}(s)\right),
$$

$\hat{\beta}_{3}$ continues to be consistent and Proposition 6 continues to hold with

$$
\sigma_{3 f s}^{2}=P\left(D_{1}>D_{0}\right)^{-2} \sum_{s \in \mathcal{S}} p(s) p_{z}(s)\left(1-p_{z}(s)\right) \operatorname{Var}\left(\omega_{i} \mid s\right) .
$$

When $p_{z}(s) \equiv p_{z}$, nominal 2SLS robust standard errors overestimate $\sigma_{3 f s}^{2}$ but underestimate $\sigma_{3 f s}^{2}+\sigma_{\infty}^{2}$. A consistent estimate for $\sigma_{3 f s}^{2}+\sigma_{\infty}^{2}$ can be obtained by

$$
\widehat{\operatorname{Cov}}_{Z, D}^{-2} \frac{1}{n} \sum_{i=1}^{n}\left(\left(Z_{i}-\hat{p}_{z}\right) \hat{\epsilon}_{i \infty}+\hat{p}_{z}\left(1-\hat{p}_{z}\right) \hat{\phi}^{\prime}\left(V_{i}-\bar{V}\right)\right)^{2}
$$

where $\hat{\phi}$ are the coefficients on $Z_{i}\left(V_{i}-\bar{V}\right), \hat{p}_{z}=\bar{Z}$, and $\widehat{\operatorname{Cov}_{Z, D}}=\frac{1}{n} \sum Z_{i} D_{i}-\bar{Z} \bar{D}$.

Additional covariates X_{i} can be utilized to improve efficiency beyond the cluster indicators. Asymptotic efficiency is obviously maximized by the semiparametric estimators in section 3, e.g. Chen et al. (2008) and Frolich (2006), where both the cluster dummies and sieve transformations of increasing dimensions of X_{i} and their interactions are included in V_{i} when defining the sieve 2SLS estimator $\hat{\beta}_{\infty}$. Here we investigate the efficiency improvement from interacting the finite dimensional functions of X_{i} (which we denote for convenience as X_{i}) with Z_{i} and the cluster dummies. We can equivalently rewrite this estimator as

$$
\hat{\beta}_{S}=\frac{\sum_{s \in \mathcal{S}} \hat{p}(s)\left(\hat{\gamma}_{1 s}-\hat{\gamma}_{0 s}+\left(\hat{\vartheta}_{1 s}-\hat{\vartheta}_{0 s}\right)^{\prime} \bar{X}_{s}\right)}{\sum_{s \in \mathcal{S}} \hat{p}(s)\left(\hat{\tau}_{1 s}-\hat{\tau}_{0 s}+\left(\hat{\zeta}_{1 s}-\hat{\zeta}_{0 s}\right)^{\prime} \bar{X}_{s}\right)}
$$

where $\hat{p}(s)=\frac{1}{n} \sum_{i=1}^{n} 1\left(X_{i} \in s\right), \bar{X}_{s}=\frac{1}{n} \sum_{i=1}^{n} 1\left(X_{i} \in S\right) X_{i} / \hat{p}(s)$, and the coefficients are obtained using four sets of cluster-specific regressions using only the s cluster:

$$
\begin{array}{ll}
\left(1-Z_{i}\right) Y_{i}=\left(1-Z_{i}\right)\left[\hat{\gamma}_{0 s}+\hat{\vartheta}_{0 s} X_{i}+e_{0 i}\right], & Z_{i} Y_{i}=Z_{i}\left[\hat{\gamma}_{1 s}+\hat{\vartheta}_{1 s} X_{i}+e_{1 i}\right] \\
\left(1-Z_{i}\right) D_{i}=\left(1-Z_{i}\right)\left[\hat{\tau}_{0 s}+\hat{\zeta}_{0 s} X_{i}+e_{0 i}\right], & Z_{i} D_{i}=Z_{i}\left[\hat{\tau}_{1 s}+\hat{\zeta}_{1 s} X_{i}+e_{1 i}\right] . \tag{12}
\end{array}
$$

Proposition 7. For $\sigma_{S f s}^{2}<\sigma_{3 f s}^{2}, \sqrt{n}\left(\hat{\beta}_{S}-\beta_{0}\right) \xrightarrow{d} N\left(0, \sigma_{S f s}^{2}+\sigma_{\infty}^{2}\right)$,
In the special case of $D=Z, \hat{\xi}_{1 s}=1, \hat{\xi}_{0 s}=0, \hat{\zeta}_{1 s}=\hat{\zeta}_{0 s}=0$. Therefore,

$$
\hat{\beta}_{S}=\sum_{s \in \mathcal{S}} \hat{p}(s)\left(\hat{\gamma}_{1 s}-\hat{\gamma}_{0 s}+\left(\hat{\vartheta}_{1 s}-\hat{\vartheta}_{0 s}\right)^{\prime} \bar{X}_{s}\right)
$$

A consistent estimate of $\sigma_{S f s}^{2}+\sigma_{\infty}^{2}$ can again be obtained using an analytical expression.

5 Monte Carlo simulations

The purpose of these simulations is to perform efficiency comparisons for the three different estimators in both the CI and LATE models, with and without covariate adaptive randomization.

The data generating process for the CI model is as follows:

$$
Y_{i}=\beta_{0}+\beta_{1} D_{i}+\beta_{2} D_{i} X_{i}^{2}+\beta_{3} X_{i}+\epsilon_{i}, \epsilon_{i} \sim N(0,1), \epsilon_{i} \perp D_{i}
$$

where $\beta_{0}=1, \beta_{1}=0.5$, and $\beta_{2}=\beta_{3}=-1$. The single covariate is generated as $X_{i} \sim N\left(\mu_{x}=10, \sigma_{x}=5\right), X_{i} \perp D_{i}, \epsilon_{i}$.

Without covariate adaptive randomization, the treatment D_{i} is generated as $D_{i} \sim \operatorname{Bern}$ (0.5).

With covariate adaptive randomization, there are two strata $S_{i}=1\left(X_{i}>\mu_{\chi}\right)$. Under block randomization, $p_{z} \#\left\{S_{i}=0\right\}$ elements are assigned to treatment in strata 0 and $p_{z} \#\left\{S_{i}=1\right\}$ elements are assigned to treatment in strata 1. Under simple randomization, $D_{i} \mid S_{i}=s \sim \operatorname{Binomial}\left(\#\left\{S_{i}=s\right\}, p_{z}\right)$ for $s=0,1$.

For the LATE model, the data generating process is

$$
\begin{aligned}
D_{i} & =\gamma_{0}+\gamma_{1} Z_{i}+v_{i}>0 \\
Y_{i} & =\beta_{0}+\beta_{1} D_{i}+\beta_{2} D_{i} X_{i}^{2}+\beta_{3} X_{i}+\epsilon_{i} \\
\binom{v_{i}}{\epsilon_{i}} & \sim N\left(\binom{0}{0},\left(\begin{array}{cc}
2 & 0.5 \\
0.5 & 2
\end{array}\right)\right)
\end{aligned}
$$

where $\gamma_{0}=1, \gamma=10, \beta_{0}=1, \beta_{1}=0.5$, and $\beta_{2}=\beta_{3}=-1$.
Without covariate adaptive randomization, the instrument Z_{i} is generated as $Z_{i} \sim \operatorname{Bern}(0.5)$. With covariate adaptive randomization, there are two strata $S_{i}=1\left(X_{i}>\mu_{x}\right)$. Under block randomization, $p_{z} \#\left\{S_{i}=0\right\}$ elements are assigned to treatment in strata 0 and $p_{z} \#\left\{S_{i}=1\right\}$ elements are assigned to treatment in strata 1. Under simple randomization, $Z_{i} \mid S_{i}=s \sim \operatorname{Binomial}\left(\#\left\{S_{i}=s\right\}, p_{z}\right)$ for $s=0,1$.

We consider the simple (L)ATE estimator without covariates, the (L)ATE estimator with the covariate, and the (L)ATE estimator with the covariate and the interaction between the instrument and the covariate. In the case of covariate adaptive randomization, the covariate is the stratum indicator V.

The first row of Table 1 shows the average Monte Carlo standard errors for the ATE estimates which are the standard deviations of the estimates across 20000 Monte Carlo simulations. The next two rows show the ATE average standard errors and average confidence interval length using nominal robust OLS standard errors for $\hat{\beta}_{1}$ and $\hat{\beta}_{2}$ and the analytic correction for $\hat{\beta}_{3}$ in Corollary 3. The number of observations is $n=2000$.

Table 1: ATE without covariate adaptive randomization.

	reg $Y D$	reg $Y D X$	reg $Y D X D *(X-\bar{X})$
Monte Carlo Standard Err	3.49	2.49	2.49
Avg Standard Err	3.50	2.50	2.50
Avg Length of Cl	13.74	9.80	9.79

We can see that relative to the baseline model with just the treatment on the right hand side, the Monte Carlo standard error decreases when we include the uninteracted covariate and when we also include the interaction between the covariate and the treatment. The same pattern holds for the average standard errors. Additionally, the average confidence interval length decreases when we add in the uninteracted covariate and when we also include the interaction between the covariate and the treatment.

The first rows of Tables 2 and 3 show the average Monte Carlo standard errors which are the standard deviations of the estimates across 20000 Monte Carlo simulations. The next two rows show the ATE average standard errors and average confidence interval length under covariate adaptive block and simple randomization with $p_{z}=0.3$ using nominal robust OLS standard errors for $\hat{\beta}_{1}$ and $\hat{\beta}_{2}$ and the analytic correction for $\hat{\beta}_{3}$. The number of observations is $n=2000$.

For covariate adaptive block randomization, the Monte Carlo standard error is the same for all three estimators. Nominal OLS standard errors for the unadjusted and uninteracted estimators are conservative, while standard errors obtained using the analytic correction are not.

For covariate adaptive simple randomization, the Monte Carlo standard error is highest for the unadjusted model and is lowest for the interacted model. Nominal OLS and analytically corrected standard errors are not conservative and exhibit the same pattern as the Monte Carlo standard errors.

The first rows of Tables 4 and 5 show the average Monte Carlo standard errors which are the standard deviations of the estimates across 20000 Monte Carlo simulations. The next two rows show the ATE average standard errors and average

Table 2: ATE with covariate adaptive block randomization, $p_{z}=0.3$.

	reg $Y D$	reg $Y D V$	reg $Y D V D *(V-\bar{V})$
Monte Carlo Standard Err	3.46	3.46	3.46
Avg Standard Err	4.52	3.78	3.45
Avg Length of CI	17.70	14.82	13.51

Table 3: ATE with covariate adaptive simple randomization, $p_{z}=0.3$.

	reg $Y D$	reg $Y D V$	reg $Y D V D *(V-\bar{V})$
Monte Carlo Standard Err	4.52	3.79	3.46
Avg Standard Err	4.52	3.79	3.45
Avg Length of Cl	17.72	14.85	13.53

Table 4: ATE with covariate adaptive block randomization, $p_{z}=0.5$.

	reg $Y D$	reg $Y D V$	reg $Y D V D *(V-\bar{V})$
Monte Carlo Standard Err	2.90	2.90	2.90
Avg Standard Err	3.50	2.90	2.90
Avg Length of Cl	13.74	11.38	11.38

Table 5: ATE with covariate adaptive simple randomization, $p_{z}=0.5$.

	reg $Y D$	reg $Y D V$	reg $Y D V D *(V-\bar{V})$
Monte Carlo Standard Err	3.51	2.90	2.90
Avg Standard Err	3.51	2.91	2.90
Avg Length of Cl	13.74	11.39	11.38

confidence interval length under covariate adaptive block and simple randomization with $p_{z}=0.5$ using nominal robust OLS standard errors for $\hat{\beta}_{1}$ and $\hat{\beta}_{2}$ and the analytic correction for $\hat{\beta}_{3}$. The number of observations is $n=2000$.

For covariate adaptive block randomization, the Monte Carlo standard error is the same for all three estimators. Nominal OLS standard errors are conservative for the unadjusted estimator but not for the uninteracted estimator. Standard errors obtained using the analytic correction are also not conservative.

For covariate adaptive simple randomization, the Monte Carlo standard error is highest for the unadjusted model and decreases when we add covariates. Unlike the case of $p_{z}=0.3$, now the uninteracted estimator and the interacted estimator have the same standard errors. Nominal OLS and analytically corrected standard errors are not conservative and exhibit the same pattern as the Monte Carlo standard errors.

The first rows of Tables 6 and 7 show the average Monte Carlo standard errors which are the standard deviations of the estimates across 20000 Monte Carlo simulations. The next two rows show the ATE average standard errors and average confidence interval length under covariate adaptive block and simple randomization with $p_{z}=0.7$ using nominal robust OLS standard errors for $\hat{\beta}_{1}$ and $\hat{\beta}_{2}$ and the analytic correction for $\hat{\beta}_{3}$. The number of observations is $n=2000$.

For covariate adaptive block randomization, the Monte Carlo standard error is the same for all three estimators. However, just like for $p_{z}=0.3$, nominal OLS standard errors for the unadjusted and uninteracted estimators are conservative, while standard errors obtained using the analytic correction are not.

For covariate adaptive simple randomization, the Monte Carlo standard error is highest for the unadjusted model and is lowest for the interacted model.

Table 6: ATE with covariate adaptive block randomization, $p_{z}=0.7$.

	reg $Y D$	reg $Y D V$	reg $Y D V D *(V-\bar{V})$
Monte Carlo Standard Err	2.63	2.63	2.63
Avg Standard Err	2.97	3.06	2.63
Avg Length of CI	11.63	12.01	10.33

Table 7: ATE with covariate adaptive simple randomization, $p_{z}=0.7$.

	reg $Y D$	reg $Y D V$	reg $Y D V D *(V-\bar{V})$
Monte Carlo Standard Err	2.98	3.05	2.63
Avg Standard Err	2.97	3.06	2.64
Avg Length of Cl	11.63	12.01	10.33

Table 8: LATE without covariate adaptive randomization.

	ivreg $Y(D=Z)$	ivreg $Y(D=Z) X$	ivreg $Y(D=Z)$ $X Z *(X-\bar{X})$
Monte Carlo Standard Err	19.31		8.67
Avg Standard Err	19.49	8.67	8.67
Avg Length of Cl	76.40	33.99	34.00

Nominal OLS and analytically corrected standard errors are not conservative and exhibit the same pattern as the Monte Carlo standard errors.

The first row of Table 8 shows the average Monte Carlo standard errors for the LATE estimates which are the standard deviations of the estimates across 20000 Monte Carlo simulations. The next two rows show the LATE average standard errors and average confidence interval length using nominal robust 2SLS standard errors for $\hat{\beta}_{1}$ and $\hat{\beta}_{2}$ and the analytic correction for $\hat{\beta}_{3}$ in Corollary 3. The number of observations is $n=2000$. We can see that relative to the baseline model with just the treatment on the right hand side, the Monte Carlo standard error decreases when we include either the uninteracted covariate by itself or with the interaction between the covariate and the instrument. The same pattern holds for the average standard errors. Additionally, the average confidence interval length decreases when we add in just the uninteracted covariate and when we also include the interaction between the covariate and the instrument.

The first rows of Tables 9 and 10 show the average Monte Carlo standard errors which are the standard deviations of the estimates across 20000 Monte

Table 9: LATE with covariate adaptive block randomization, $p_{z}=0.3$.

	ivreg $Y(D=Z)$	ivreg $Y(D=Z) V$	ivreg $Y(D=Z)$ $V Z *(V-\bar{v})$
Monte Carlo Standard Err	14.78	14.78	14.78
Avg Standard Err	21.76	14.92	14.84
Avg Length of CI	85.30	58.50	58.18

Table 10: LATE with covariate adaptive simple randomization, $p_{z}=0.3$.

	ivreg $Y(D=Z)$	ivreg $Y(D=Z) V$	ivreg $Y(D=Z)$ $V Z *(V-\bar{V})$
Monte Carlo Standard Err	21.71	14.85	14.79
Avg Standard Err	21.79	14.94	14.86
Avg Length of Cl	85.42	58.57	58.23

Carlo simulations. The next two rows show the LATE average standard errors and average confidence interval length under covariate adaptive block and simple randomization with $p_{z}=0.3$ using nominal robust 2SLS standard errors for $\hat{\beta}_{1}$ and $\hat{\beta}_{2}$ and the analytic correction for $\hat{\beta}_{3}$. The number of observations is $n=2000$.

For covariate adaptive block randomization, the Monte Carlo standard error is the same for all three estimators. However, the nominal 2SLS standard errors for the unadjusted estimator is very conservative, while the nominal 2SLS standard errors for the uninteracted estimator and the analytic correction standard errors for the interacted estimator are not particularly conservative.

For covariate adaptive simple randomization, the Monte Carlo standard error is highest for the unadjusted model and is lowest for the interacted model. Nominal 2SLS and analytically corrected standard errors are not particularly conservative and exhibit the same pattern as the Monte Carlo standard errors.

The first rows of Tables 11 and 12 show the average Monte Carlo standard errors which are the standard deviations of the estimates across 20000 Monte Carlo simulations. The next two rows show the LATE average standard errors and average confidence interval length under covariate adaptive block and simple randomization with $p_{z}=0.5$ using nominal robust 2SLS standard errors for $\hat{\beta}_{1}$ and $\hat{\beta}_{2}$ and the analytic correction for $\hat{\beta}_{3}$. The number of observations is $n=2000$.

For covariate adaptive block randomization, the Monte Carlo standard error is the same for all three estimators. Nominal 2SLS standard errors for the unadjusted estimator are conservative, while nominal 2SLS standard errors for

Table 11: LATE with Covariate adaptive block randomization, $p_{z}=0.5$.

	ivreg $Y(D=Z)$	ivreg $Y(D=Z) V$	ivreg $Y(D=Z)$ $V Z *(V-\bar{V})$
Monte Carlo Standard Err	13.60		13.60
Avg Standard Err	19.46	13.60	13.63
Avg Length of Cl	76.30	53.43	53.43

Table 12: LATE with Covariate Adaptive Simple Randomization, $p_{z}=0.5$.

	ivreg $Y(D=Z)$	ivreg $Y(D=Z) V$	ivreg $Y(D=Z)$ $V Z *(V-\bar{V})$
Monte Carlo Standard Err	19.49	13.58	13.58
Avg Standard Err	19.49	13.64	13.63
Avg Length of Cl	76.40	53.46	53.45

the uninteracted estimator are not. Standard errors obtained using the analytic correction are also not conservative.

For covariate adaptive simple randomization, the Monte Carlo standard error is highest for the unadjusted model and decreases when we add covariates. Unlike the case of $p_{z}=0.3$, now the uninteracted estimator and the interacted estimator have the same standard errors. Nominal 2SLS and analytically corrected standard errors are not conservative and exhibit the same pattern as the Monte Carlo standard errors.

The first rows of Tables 13 and 14 show the average Monte Carlo standard errors which are the standard deviations of the estimates across 20000 Monte Carlo simulations. The next two rows show the LATE average standard errors and average confidence interval length under covariate adaptive block and simple randomization with $p_{z}=0.7$ using nominal robust 2SLS standard errors for $\hat{\beta}_{1}$ and $\hat{\beta}_{2}$ and the analytic correction for $\hat{\beta}_{3}$. The number of observations is $n=2000$.

For covariate adaptive block randomization, the Monte Carlo standard error is the same for all three estimators. However, just like in Table 9, nominal 2SLS standard errors for the unadjusted estimator are very conservative, while standard errors for the uninteracted and interacted estimators are not.

For covariate adaptive simple randomization, the Monte Carlo standard error is highest for the unadjusted model, decreases when we add the uninteracted covariate, and is the lowest for the interacted model. Nominal 2SLS and analytically corrected standard errors are not conservative and exhibit the same pattern as the Monte Carlo standard errors.

Table 13: LATE with Covariate adaptive block randomization, $p_{z}=0.7$.

	ivreg $Y(D=Z)$	ivreg $Y(D=Z) V$	ivreg $Y(D=Z)$ $V Z *(V-\bar{V})$
Monte Carlo Standard Err	14.94	14.93	14.93
Avg Standard Err	20.72	14.95	14.87
Avg Length of CI	81.21	58.60	58.27

Table 14: LATE with covariate adaptive simple randomization, $p_{z}=0.7$.

	ivreg $Y(D=Z)$	ivreg $Y(D=Z) V$	ivreg $Y(D=Z)$ $V Z *(V-\bar{V})$
Monte Carlo Standard Err	20.91	15.03	14.95
Avg Standard Err	20.75	14.95	14.87
Avg Length of Cl	81.35	58.62	58.27

6 Empirical application

We investigate the efficiency improvement in ATE estimates after including the interaction between the exogenous treatment and the demeaned covariate in a dataset with over 2 million observations. Each observation is an expiry auction for a particular domain name listed on GoDaddy, an online platform where domain names which are no longer maintained by an individual are auctioned off in an open-bid English auction with a minimum bid of $\$ 12$ and a duration of approximately 10 days. One interesting fact about these auctions is that the majority of participants are speculators who have no intrinsic use of the domain name except turning a profit when they resell the name in an aftermarket. Another interesting fact is that very few of the English auctions result in sale, partly due to the sheer volume of domain names that are listed for sale. For example, only 1.3% of auctions with a start time on or after May 12th, 2017 and before July 11th, 2017 had bids at or above the minimum bid.

Starting on May 12th, 2017, GoDaddy implemented a simple randomized experiment where some domain names would receive a valuation metric provided by a machine learning algorithm using deep learning. The idea was to provide auction participants with a better sense of the value of a domain name using features such as the length of the domain name, how many words in the domain name are part of the English dictionary, and whether the domain name is a .com, .net, or .org. The algorithm performed better than many existing approaches for predicting whether the domain name would sell and if so, at what price. At the

Table 15: ATE of valuation on sale price conditional on entry for 9283 auctions from May 12th, 2017 to June 1st, 2017.

	reg Y D	reg Y D X	$\operatorname{reg} Y \mathrm{DXD}{ }^{\text {* }}(X-\bar{X})$
$\mathrm{X}=$ length of domain name			
$\hat{\beta}$	1.6754	1.0673	1.0682
$s e(\hat{\beta})$	6.1526	6.1325	6.1402
X=length,is.com, is.net, is.org			
$\hat{\beta}$	1.6754	0.8519	0.8584
$s e(\hat{\beta})$	6.1526	6.1165	6.1301
X=length,is.com,is.net,is.org,contains English word			
$\hat{\beta}$	1.6754	0.7859	0.7894
$s e(\hat{\beta})$	6.1526	6.1966	6.1301

start of the experiment, the treatment probability was 50%, but starting June 1st, 2017, it became 75%. Then on July 11th, 2017, the treatment probability became 100\%.

In table 15, we look at the average treatment effect of including the valuation on the sale price conditional on at least one bidder meeting the minimum bid requirement for auctions with start times between May 12th, 2017 and June 1st, 2017. Of the 812026 auctions which occurred during this time frame, only 9283 auctions met the minimum bid requirement. In the first column, we estimate the ATE without any covariates to be 1.6754 with a standard error of 6.1526 . In the second column, we add different combinations of the following covariates: the length of the domain name, whether the top level domain is .com, .net, or .org, and whether the domain name contains any words in the English dictionary. After including all of these covariates, the ATE becomes 0.7859 and the standard error increases to 6.1966 . In the third column, we include the covariates and the interactions between the treatment and the demeaned covariates. The ATE becomes 0.7894 , and the standard error decreases to 6.1301.

In table 16, we look at the average treatment effect of including the valuation on the sale price conditional on at least one bidder meeting the minimum bid requirement for auctions with start times between June 1st, 2017 and July 11th, 2017. Of the 1366161 auctions in this time frame, only 19165 auctions met the minimum bid requirement. In the first column, we estimate the ATE without any covariates to be 12.6569 with a standard error of 4.4770 . In the second column, we add different combinations of the following covariates: the length of the domain name, whether the top level domain is .com, .net, or .org, and whether the domain name contains any words in the English dictionary. After including all of these

Table 16: ATE of valuation on sale price conditional on entry for 19165 auctions from June 1st, 2017 to July 11th, 2017.

	reg Y D	reg Y D X	$\operatorname{reg} Y \mathrm{DXD} \mathrm{N}^{(X-\bar{X})}$
$\mathrm{X}=$ length of domain name			
$\hat{\beta}$	12.6569	14.1856	13.8739
se ($\hat{\beta}$)	4.4770	4.5152	4.4655
$\hat{\beta}$ X=length,is.com, is.net, is.org			
$\hat{\beta}$	12.6569	14.8170	13.8605
$\operatorname{se}(\hat{\beta})$	4.4770	4.5488	4.4627
$\hat{\beta}$ X=length,is.com, is.net, is.org,contains English word			
$\hat{\beta}$	12.6569	14.3432	13.1778
$\text { se }(\hat{\beta})$	4.4770	4.6244	4.4617

covariates, the ATE becomes 14.3432 and the standard error increases to 4.6244. In the third column, we include the covariates and the interactions between the treatment and the demeaned covariates. The ATE becomes 13.1778, and the standard error decreases to 4.4617.

In table 17, we look at the average treatment effect of including the valuation on the sale price conditional on at least one bidder meeting the minimum bid requirement for auctions with start times between May 12th, 2017 and July 11th, 2017. Of the 2178187 auctions in this time frame, only 28448 auctions met the minimum bid requirement. In the first column, we estimate the ATE without any covariates to be 6.6893 with a standard error of 3.8301. In the second column, we add different combinations of the following covariates: the length of the domain

Table 17: ATE of valuation on sale price conditional on entry for 28448 auctions from May 12th, 2017 to July 11th, 2017

	reg Y D	reg Y D X	$\operatorname{reg} Y \mathrm{DXD} \mathrm{D}^{*}(X-\bar{X})$
$X=$ length of domain name			
$\hat{\beta}$	6.6893	7.2388	7.1763
$s e(\hat{\beta})$	3.8301	3.8316	3.8226
X=length,is.com, is.net,is.org			
$\hat{\beta}$	6.6893	6.9263	6.7882
$s e(\hat{\beta})$	3.8301	3.8377	3.8186
X=length,is.com, is.net, is.org, contains English word			
$\hat{\beta}$	6.6893	6.7003	6.4064
$s e(\hat{\beta})$	3.8301	3.8848	3.8183

name, whether the top level domain is .com, .net, or .org, and whether the domain name contains any words in the English dictionary. After including all of these covariates, the ATE becomes 6.7003 and the standard error increases to 3.8848 . In the third column, we include the covariates and the interactions between the treatment and the demeaned covariates. The ATE becomes 6.4064, and the standard error decreases to 3.8183 .

7 Conclusion

This paper has compared the relative efficiencies of different types of OLS and 2SLS estimators in randomized or conditionally randomized experiments. Although the results are presented in the context of (local) average treatment effects, they can be generalized to nonlinear parameters including quantile treatment effects. Further extensions include propensity score regression and regression discontinuity models.

Acknowledgment: We thank Joe Romano for very helpful discussions, and particular the editors and referee for insightful comments and constructive suggestions. This research was supported by a Faculty Research Grant awarded by the Committee on Research from the University of California, Santa Cruz, the National Science Foundation (SES 1658950), and SIEPR. Correspondence can be sent to jeqli@ucsc.edu.

References

Bugni, F., I.A. Canay, A.M. Shaikh (2017a), Inference Under Covariate-Adaptive Randomization. Tech. rep.
Bugni, F., I.A. Canay, A.M. Shaikh (2017b), Inference Under Covariate-Adaptive Randomization with Multiple Treatments. Tech. rep.
Chen, X., H. Hong, A. Tarozzi (2008), Semiparametric Efficiency in GMM Models with Auxiliary Data. Annals of Statistics 36: 808-843.
Freedman, D.A. (1981), Bootstrapping Regression Models. The Annals of Statistics 9: 1218-1228.
Freedman, D.A. (2008), On Regression Adjustments to Experimental Data. Advances in Applied Mathematics 40: 180-193.
Frolich, M. (2006), Nonparametric IV Estimation of Local Average Treatment Effects with Covariates. Journal of Econometrics 139: 35-75.
Hahn, J. (1998), On the Role of Propensity Score in Efficient Semiparametric Estimation of Average Treatment Effects. Econometrica 66: 315-332.
Hong, H., D. Nekipelov (2010), Semiparametric Efficiency in Nonlinear LATE Models. Quantitative Economics 1: 279-304.

Imbens, G., J. Angrist (1994), Identification and Estimation of Local Average Treatment Effects. Econometrica 62: 467-475.
Imbens, G.W., D.B. Rubin (2015), Causal Inference in Statistics, Social, and Biomedical Sciences. Cambridge University Press.
Imbens, G. W., J. M. Wooldridge (2009), Recent Developments in the Econometrics of Program Evaluation. Journal of Economic Literature 47: 5-86.
Lin, W. (2013), Agnostic Notes on Regression Adjustments to Experimental Data: Reexamining Freedman Critique. The Annals of Applied Statistics 7: 295-318.
Newey, W. (1994), The Asymptotic Variance of Semiparametric Estimators. Econometrica 62: 1349-82.
Newey, W. (1997), Convergence Rates and Asymptotic Normality for Series Estimators. Journal of Econometrics 79: 147-168.
Rosenbaum, P., D. Rubin (1983), The Central Role of the Propensity Score in Observational Studies for Causal Effects. Biometrika 70:41.
Shao, J., X. Yu, B. Zhong (2010), A Theory for Testing Hypotheses Under Covariateadaptive Randomization. Biometrika 97: 347-360.

Article note: This article is part of the special issue "Big Data" published in the Journal of Economics and Statistics. Access to further articles of this special issue can be obtained at www.degruyter.com/journals/jbnst.
This paper was inspired by a discussion with Patrick Kline, who also provided key references.

Appendix

A Proof of Theorem 1

For $k=1,2,3$, let $W_{i k}$ denote the instruments, let $V_{i k}$ and $U_{i k}$ denote the regressors, and let θ_{k} denote the parameters of the instrumental variable moment condition $E W_{i k}\left(Y_{i}-V_{i k}^{\prime} \theta_{0 k}\right)=0$. The estimators $\hat{\theta}_{k}$ are defined by the sample estimating equations:

$$
\begin{equation*}
\frac{1}{n} \sum_{i=1}^{n} W_{i k}\left(Y_{i}-V_{i k}^{\prime} \hat{\theta}_{k}\right)+\frac{1}{n} \sum_{i=1}^{n} W_{i k} U_{i k} \hat{\phi}^{\prime}\left(\bar{X}-\mu_{x}\right)=0 . \tag{13}
\end{equation*}
$$

For $\hat{\beta}_{1}$, let $U_{i 1}=0, p_{z}=P\left(Z_{i}=1\right), p_{d}=P\left(D_{i}=1\right)$, $W_{i 1}=\left(1 Z_{i}-p_{z}\right), V_{i 1}=$ $\left(1 D_{i}-p_{d}\right)$, and $\theta_{1}=(\alpha, \beta)$. For $\hat{\beta}_{2}$, let $U_{i 2}=0, W_{i 2}=\left(1 Z_{i}-p_{z} X_{i}-\mu_{x}\right) V_{i 2}=$ $\left(1 D_{i}-p_{d} X_{i}-\mu_{x}\right), \theta_{2}=(\alpha, \beta, \eta)$. For $\hat{\beta}_{3}$, let $U_{i 3}=Z_{i}-p_{z}, \theta_{3}=(\alpha, \beta, \eta, \phi), W_{i 3}=$ $\left(1 Z_{i}-p_{z} X_{i}-\mu_{x}\left(Z_{i}-p_{z}\right)\left(X_{i}-\mu_{x}\right)\right)$, and $V_{i 3}=\left(1 D_{i}-p_{d} X_{i}-\mu_{x}\left(Z_{i}-p_{z}\right)\left(X_{i}-\mu_{x}\right)\right)$. eq. (13) leads to the following influence function representation of :

$$
\begin{aligned}
\sqrt{n}\left(\hat{\theta}_{k}-\theta_{0 k}\right)= & \left(E W_{i k} V_{i k}\right)^{-1} \frac{1}{\sqrt{n}} \sum_{i=1}^{n}\left(W_{i k}\left(Y_{i}-V_{i k}^{\prime} \theta_{0}\right)\right. \\
& \left.+E W_{i k} U_{i k} \phi_{0}\left(X_{i}-\mu_{x}\right)\right)+o_{P}(1)
\end{aligned}
$$

It can be calculated that the second row of $E\left(W_{i k} V_{i k}\right)^{-1}, k=1,2,3$ takes the forms of

$$
\left(0 \operatorname{Cov}(D, Z)^{-1}\right) \quad\left(0 \operatorname{Cov}(D, Z)^{-1} 0\right) \quad\left(0 \operatorname{Cov}(D, Z)^{-1} 00\right) .
$$

Therefore for $k=1,2,3$,

$$
\begin{align*}
\sqrt{n}\left(\hat{\beta}_{k}-\beta_{0}\right) & =\operatorname{Cov}(Z, D)^{-1} \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \psi_{k}\left(Y_{i}, Z_{i}, X_{i}, W_{i k}, V_{i k}, U_{i k}\right)+o_{P}(1), \\
\psi_{k}\left(Y_{i}, Z_{i}, X_{i}, W_{i k}, U_{i k}, V_{i k}\right) & =\underbrace{\left(Z_{i}-p_{z}\right)\left(Y_{i}-V_{i k}^{\prime} \theta_{0}\right)}_{\psi_{i k}^{1}}+\underbrace{E\left[\left(Z_{i}-p_{z}\right) U_{i k}\right] \phi_{0}\left(X_{i}-\mu_{x}\right)}_{\psi_{i k}^{2}} \equiv \psi_{i k} \tag{14}
\end{align*}
$$

Consequently, $\sqrt{n}\left(\hat{\beta}_{k}-\beta_{0}\right) \xrightarrow{d} N\left(0, \operatorname{Cov}(D, Z)^{-2} \operatorname{Var}\left(\psi_{i k}\right)\right)$. It remains to show that for $j=1,2, \operatorname{Var}\left(\psi_{i 3}\right) \leq \operatorname{Var}\left(\psi_{i j}\right)$. This can be done by showing that $\operatorname{Cov}\left(\psi_{i j}-\psi_{i 3}, \psi_{i 3}\right)=0$. For this purpose, consider first $j=1$. Note that

$$
\begin{align*}
\psi_{i 1}-\psi_{i 3} & =\left(Z_{i}-p_{z}\right)\left[\eta_{0}^{\prime}\left(X_{i}-\mu_{x}\right)+\phi_{0}^{\prime}\left(X_{i}-\mu_{x}\right)\left(Z_{i}-p_{z}\right)\right]-\left(p_{z}-p_{z}^{2}\right)\left(X_{i}-\mu_{x}\right)^{\prime} \phi \\
& =\underbrace{\left(Z_{i}-p_{z}\right) \eta_{0}^{\prime}\left(X_{i}-\mu_{x}\right)}_{\Delta \psi_{i 13}^{1}}+\underbrace{\left(Z_{i}-p_{z}\right)^{2} \phi_{0}^{\prime}\left(X_{i}-\mu_{x}\right)}_{\Delta \psi_{i 13}^{2}}-\underbrace{\left(p_{z}-p_{z}^{2}\right)\left(X_{i}-\mu_{x}\right)^{\prime} \phi} . \tag{15}
\end{align*}
$$

It follows from $Z_{i}^{2}=Z_{i}$ and $E W_{i 3}\left(Y_{i}-V_{i 3}^{\prime} \theta_{0}\right)=0$ that

$$
\operatorname{Cov}\left(\psi_{i 3}^{1}, \Delta \psi_{i 13}^{k}\right)=0, \quad k=1,2,3
$$

By independence of Z_{i} from $X_{i}, \operatorname{Cov}\left(\psi_{i 3}^{2}, \Delta \psi_{i 13}^{1}\right)=0$. Finally, we check that $\operatorname{Cov}\left(\psi_{i 3}^{2}, \Delta \psi_{i 13}^{2}\right)=\left(p_{z}-p_{z}^{2}\right)^{2} \phi_{0}^{\prime} \operatorname{Var}(X) \phi_{0}$, and $\operatorname{Cov}\left(\psi_{i 3}^{2}, \Delta \psi_{i 13}^{3}\right)=$ $\left(p_{z}-p_{z}^{2}\right)^{2} \phi_{0}^{\prime} \operatorname{Var}(X) \phi_{0}$, so that

$$
\operatorname{Cov}\left(\psi_{i 3}^{2}, \Delta \psi_{i 13}^{2}-\Delta \psi_{i 13}^{3}\right)=0 .
$$

We have verified that $\operatorname{Cov}\left(\Delta \psi_{i 13}, \psi_{i 3}\right)=0$, and $\hat{\beta}_{3}$ is more efficient than $\hat{\beta}_{1}$ asymptotically.

Next turn to $\hat{\beta}_{2}$ and $\psi_{i 2}=\left(Z_{i}-p_{z}\right)\left(Y_{i}-\alpha_{0}-\beta_{0}\left(D_{i}-p_{d}\right)-\eta_{0}^{\prime}\left(X_{i}-\mu_{x}\right)\right)$. We want to show $\operatorname{Var}\left(\psi_{i 3}\right) \leq \operatorname{Var}\left(\psi_{i 2}\right)$ by verifying that $\operatorname{Cov}\left(\Delta \psi_{i 23}, \psi_{i 3}\right)=0$, where

$$
\begin{align*}
\Delta \psi_{i 23} & =\left(Z_{i}-p_{z}\right)^{2} \phi_{0}^{\prime}\left(X_{i}-\mu_{x}\right)-\left(p_{z}-p_{z}^{2}\right) \phi_{0}^{\prime}\left(X_{i}-\mu_{x}\right) \\
& =\underbrace{\left(\left(1-2 p_{z}\right) Z_{i}+p_{z}^{2}\right) \phi_{0}^{\prime}\left(X_{i}-\mu_{x}\right)}_{\Delta \psi_{i 23}^{1}}-\underbrace{\left(p_{z}-p_{z}^{2}\right) \phi_{0}^{\prime}\left(X_{i}-\mu_{x}\right)}_{\Delta \psi_{i 23}^{2}} . \tag{16}
\end{align*}
$$

By the moment conditions $E W_{i 3}\left(Y_{i}-V_{i 3}^{\prime} \theta_{0}\right)=0$,

$$
\operatorname{Cov}\left(\psi_{i 3}^{1}, \Delta \psi_{i 23}^{k}\right)=0, \quad, k=1,2
$$

By independence between Z and X

$$
\operatorname{Cov}\left(\psi_{i 3}^{2}, \Delta \psi_{i 23}^{1}\right)=\left(p_{z}-p_{z}^{2}\right)^{2} \phi_{0}^{\prime} \operatorname{Var}(X) \phi_{0} .
$$

Therefore since also $\operatorname{Cov}\left(\psi_{i 3}^{2}, \Delta \psi_{i 23}^{2}\right)=\left(p_{z}-p_{z}^{2}\right)^{2} \phi_{0}^{\prime} \operatorname{Var}(X) \phi_{0}$, it follows that

$$
\operatorname{Cov}\left(\psi_{i 3}^{2}, \Delta \psi_{i 23}^{1}-\Delta \psi_{i 23}^{2}\right)=0
$$

So $\operatorname{Cov}\left(\Delta \psi_{i 23}, \psi_{i 3}\right)=0$, and $\operatorname{Var}\left(\psi_{i 3}\right) \leq \operatorname{Var}\left(\psi_{i 1}\right) . \hat{\beta}_{3}$ is also more efficient than $\hat{\beta}_{2}$.
However, there is no efficiency ranking between $\hat{\beta}_{1}$ and $\hat{\beta}_{2}$. Note that

$$
\Delta \psi_{i 12} \equiv \psi_{i 1}-\psi_{i 2}=\left(Z_{i}-p_{z}\right) \eta_{0}^{\prime}\left(X_{i}-\mu_{x}\right) .
$$

There is no guarantee of either $\operatorname{Cov}\left(\Delta \psi_{i 12}, \psi_{i 2}\right)=0$ or $\operatorname{Cov}\left(\Delta \psi_{i 12}(W), \psi_{i 1}(W)\right)=0$. This is because the moment conditions for $\hat{\beta}_{2}$ do not impose that

$$
E Z X\left(Y-\alpha_{0}-\beta_{0} D-\eta_{0}^{\prime} X\right)=0
$$

and the moment conditions for $\hat{\beta}_{1}$ do not impose

$$
E Z X\left(Y-\alpha_{0}-\beta_{0} D\right)=0 \quad \text { or } \quad E X\left(Y-\alpha_{0}-\beta_{0} D\right)=0
$$

B Proof of Corollary 1

Under the causal model, the parameter β_{0} and the influence functions for $\hat{\beta}$ can be written using the counterfactuals. Recall that $\beta_{0}=E\left(Y_{1}-Y_{0} \mid D_{1}>D_{0}\right)=$
$E\left(Y_{1}^{*}-Y_{0}^{*}\right) / E\left(D_{1}-D_{0}\right)$. Define $t_{1}=Y_{1}^{*}-\beta_{0} D_{1}, t_{0}=Y_{0}^{*}-\beta_{0} D_{0}$. Then

$$
\begin{aligned}
\alpha_{0}-\beta_{0} p_{d} & =E Y-\beta_{0} E D=p_{z} E t_{1}+\left(1-p_{z}\right) E t_{0} \\
\psi_{1} & =\left(Z-p_{z}\right)\left(Y-\alpha_{0}-\beta_{0}\left(D-p_{d}\right)\right) \\
& =\left(Z-p_{z}\right)\left(\left(1-p_{z}\right)\left(t_{1}-E t_{1}\right)+p_{z}\left(t_{0}-E t_{0}\right)\right)+p_{z}\left(1-p_{z}\right)\left(t_{1}-t_{0}\right),
\end{aligned}
$$

where by definition $E t_{1}-E t_{0}=0$. Next consider $\hat{\beta}_{2}$. It follows from the 3rd moment equation $E\left(X-\mu_{x}\right)\left(Y-\alpha_{0}-\beta_{0}\left(D-p_{d}\right)-\eta_{0}\left(X-\mu_{X}\right)\right)=0$ that

$$
\eta_{0}=\operatorname{Var}(X)^{-1} \operatorname{Cov}\left(X, Y-\beta_{0} D\right)=\operatorname{Var}(X)^{-1}\left[p_{z} \operatorname{Cov}\left(X, t_{1}\right)+\left(1-p_{z}\right) \operatorname{Cov}\left(X, t_{0}\right)\right],
$$

and that

$$
\begin{aligned}
\psi_{2} & =\left(Z-p_{z}\right)\left(Y-\alpha_{0}-\beta_{0}\left(D-p_{d}\right)-\eta_{0}\left(X-\mu_{x}\right)\right) \\
& =\left(Z-p_{z}\right)\left(\left(1-p_{z}\right)\left(t_{1}-E t_{1}\right)+p_{z}\left(t_{0}-E t_{0}\right)-\eta_{0}\left(X-\mu_{x}\right)\right)+p_{z}\left(1-p_{z}\right)\left(t_{1}-t_{0}\right),
\end{aligned}
$$

Next consider $\hat{\beta}_{3}$. It follows from the 4th moment condition

$$
E\left(Z-p_{z}\right)\left(X-\mu_{x}\right)\left(Y-\alpha_{0}-\beta_{0}\left(D-p_{d}\right)-\eta_{0}\left(X-\mu_{X}\right)-\phi_{0}\left(Z-p_{z}\right)\left(X-\mu_{x}\right)\right)=0
$$

that $\phi_{0}=\operatorname{Var}(X)^{-1} \operatorname{Cov}\left(X, t_{1}-t_{0}\right)$. Therefore,

$$
\begin{aligned}
\psi_{3}^{1}= & \left(Z-p_{z}\right)\left(Y-\alpha_{0}-\beta_{0}\left(D-p_{d}\right)-\eta_{0}^{\prime}\left(X-\mu_{x}\right)-\phi_{0}^{\prime}\left(Z-p_{z}\right)\left(X-\mu_{x}\right)\right) \\
=(Z- & \left.p_{z}\right)\left(\left(1-p_{z}\right)\left(t_{1}-E t_{1}-\operatorname{Cov}\left(t_{1}, X\right) \operatorname{Var}(X)^{-1}\left(X-\mu_{x}\right)\right)\right. \\
& \left.+p_{z}\left(t_{0}-E t_{0}-\operatorname{Cov}\left(t_{0}, X\right) \operatorname{Var}(X)^{-1}\left(X-\mu_{x}\right)\right)\right) \\
& +p_{z}\left(1-p_{z}\right)\left(\left(t_{1}-t_{0}\right)-\operatorname{Cov}\left(t_{1}-t_{0}, X\right) \operatorname{Var}(X)^{-1}\left(X-\mu_{x}\right)\right)
\end{aligned}
$$

and $\psi_{3}^{2}=p_{z}\left(1-p_{z}\right) \operatorname{Cov}\left(t_{1}-t_{0}, X\right) \operatorname{Var}(X)^{-1}\left(X-\mu_{x}\right)$. Therefore

$$
\begin{aligned}
& \psi_{3}=\left(Z-p_{z}\right)\left(Y-\alpha_{0}-\beta_{0}\left(D-p_{d}\right)-\eta_{0}^{\prime}\left(X-\mu_{x}\right)-\phi_{0}^{\prime}\left(Z-p_{z}\right)\left(X-\mu_{x}\right)\right) \\
&=\left(Z-p_{z}\right)\left(\left(1-p_{z}\right)\left(t_{1}-E t_{1}-\operatorname{Cov}\left(t_{1}, X\right) \operatorname{Var}(X)^{-1}\left(X-\mu_{x}\right)\right)\right. \\
&\left.\quad+p_{z}\left(t_{0}-E t_{0}-\operatorname{Cov}\left(t_{0}, X\right) \operatorname{Var}(X)^{-1}\left(X-\mu_{x}\right)\right)\right)+p_{z}\left(1-p_{z}\right)\left(t_{1}-t_{0}\right)
\end{aligned}
$$

Using $Z \perp\left(t_{1}, t_{0}, X\right)$, it can then be verified that

$$
\operatorname{Cov}\left(\psi_{1}-\psi_{3}, \psi_{3}\right)=0 \quad \text { and } \quad \operatorname{Cov}\left(\psi_{2}-\psi_{3}, \psi_{3}\right)=0 .
$$

In the special case when $D=Z, t_{1}=Y_{1}-\beta_{0}, t_{0}=Y_{0}, \beta_{0}=E\left(Y_{1}-Y_{0}\right)$, then

$$
\begin{align*}
\psi_{3}=(Z- & \left.p_{z}\right)\left(\left(1-p_{z}\right)\left(Y_{1}-E Y_{1}-\operatorname{Cov}\left(Y_{1}, X\right) \operatorname{Var}(X)^{-1}\left(X-\mu_{x}\right)\right)\right. \\
& \left.+p_{z}\left(Y_{0}-E Y_{0}-\operatorname{Cov}\left(Y_{0}, X\right) \operatorname{Var}(X)^{-1}\left(X-\mu_{x}\right)\right)\right)+p_{z}\left(1-p_{z}\right)\left(Y_{1}-Y_{0}-\beta_{0}\right) \\
& \begin{aligned}
\psi_{2}=(Z & \left.-p_{z}\right)\left(\left(1-p_{z}\right)\left(Y_{1}-E Y_{1}\right)\right. \\
& \left.+p_{z}\left(Y_{0}-E Y_{0}\right)-\eta_{0}\left(X-\mu_{x}\right)\right)+p_{z}\left(1-p_{z}\right)\left(Y_{1}-Y_{0}-\beta_{0}\right)
\end{aligned}
\end{align*}
$$

for $\eta_{0}=\operatorname{Var}(X)^{-1}\left[p_{z} \operatorname{Cov}\left(X, Y_{1}\right)+\left(1-p_{z}\right) \operatorname{Cov}\left(X, Y_{0}\right)\right]$.

C Proof of Corollary 2

Replace μ_{x} by $\mu_{x s}=E X_{S}$. Then it can be shown that $\hat{\beta}_{3}$ is more efficient than $\hat{\beta}_{4}$. Similar calculations as those for $\hat{\beta}_{3}$ show that

$$
\begin{aligned}
\sqrt{n}\left(\hat{\beta}_{4}-\beta_{0}\right)= & \operatorname{Cov}(D, Z)^{-1} \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \psi_{i 4}+o_{P}(1), \quad \text { where } \\
\psi_{i 4}= & \left(Z_{i}-p_{z}\right)\left(Y_{i}-\rho_{0}-\beta_{0}\left(D_{i}-p_{d}\right)-\eta_{0 s}^{\prime}\left(X_{s i}-\mu_{x s}\right)-\phi_{0 s}^{\prime}\left(X_{s i}-\mu_{x s}\right)\right. \\
& \left.\left(Z_{i}-p_{z}\right)\right)+\left(p_{z}-p_{z}^{2}\right) \phi_{0 s}^{\prime}\left(X_{s i}-\mu_{x s}\right)
\end{aligned}
$$

Then we can write, for $\bar{\eta}_{0}, \bar{\phi}_{0}$ possibly different from both η_{0}, ϕ_{0} and $\eta_{0 s}, \phi_{0 s}$,

$$
\begin{aligned}
\Delta \psi_{i 43}= & \psi_{i 4}-\psi_{i 3} \\
= & \left(Z_{i}-p_{z}\right)\left[\eta_{0}^{\prime}\left(X_{i}-\mu_{x}\right)-\eta_{0 s}^{\prime}\left(X_{s i}-\mu_{x s}\right)+\left(\phi_{0}^{\prime}\left(X_{i}-\mu_{x}\right)-\phi_{0 s}^{\prime}\left(X_{s i}-\mu_{x s}\right)\right)\right. \\
& \left.\left(Z_{i}-p_{z}\right)\right]+\left(p_{z}-p_{z}^{2}\right)\left(X_{s i}-\mu_{x s}\right)^{\prime} \phi_{0 s}-\left(p_{z}-p_{z}^{2}\right)\left(X_{i}-\mu_{x}\right)^{\prime} \phi_{0} \\
= & \left(Z_{i}-p_{z}\right)\left[\bar{\eta}_{0}^{\prime}\left(X_{i}-\mu_{x}\right)+\bar{\phi}_{0}^{\prime}\left(X_{i}-\mu_{x}\right)\left(Z_{i}-p_{z}\right)\right]-\left(p_{z}-p_{z}^{2}\right)\left(X_{i}-\mu_{x}\right)^{\prime} \bar{\phi}_{0} \\
= & \underbrace{\left(Z_{i}-p_{z}\right) \bar{\eta}_{0}^{\prime}\left(X_{i}-\mu_{x}\right)}_{\Delta \psi_{i 43}^{1}}+\underbrace{\left(Z_{i}-p_{z}\right)^{2} \bar{\phi}_{0}^{\prime}\left(X_{i}-\mu_{x}\right)}_{\Delta \psi_{i 43}^{2}}-\underbrace{\left(p_{z}-p_{z}^{2}\right)\left(X_{i}-\mu_{x}\right)^{\prime} \bar{\phi}_{0}}_{\Delta \psi_{i 43}^{3}} .
\end{aligned}
$$

It follows from $Z_{i}^{2}=Z_{i}$, and the instrumental variable moment equations that

$$
\operatorname{Cov}\left(\psi_{i 3}^{1}, \Delta \psi_{i 43}^{k}\right)=0, \quad, k=1,2,3
$$

By independence of Z_{i} and $X_{i}, \operatorname{Cov}\left(\psi_{i 3}^{2}, \Delta \psi_{i 43}^{1}\right)=0$. Finally, we check that

$$
\operatorname{Cov}\left(\psi_{i 3}^{2}, \Delta \psi_{i 43}^{2}\right)=\left(p_{z}-p_{z}^{2}\right)^{2} \phi_{0}^{\prime} \operatorname{Var}(X) \bar{\phi}_{0}
$$

and $\operatorname{Cov}\left(\psi_{i 3}^{2}, \Delta \psi_{i 43}^{3}\right)=\left(p_{z}-p_{z}^{2}\right)^{2} \psi_{0}^{\prime} \operatorname{Var}(X) \bar{\psi}_{0}$. so that

$$
\operatorname{Cov}\left(\psi_{i 3}^{2}, \Delta \psi_{i 43}^{2}-\Delta \psi_{i 43}^{3}\right)=0 .
$$

We have verified that $\operatorname{Cov}\left(\Delta \psi_{i 43}, \psi_{i 3}\right)=0$, and $\hat{\beta}_{3}$ is more efficient than $\hat{\beta}_{4}$ asymptotically. The same result can also be verified using the counter-factual model as in Corollary 1.

D Proof of Corollary 3

Note $\hat{A}_{k}^{-1} \hat{B}_{k} \hat{A}_{k}^{-1} \xrightarrow{p} \operatorname{Var}\left(\Lambda_{k}\left(E W_{i k} V_{i k}^{\prime}\right)^{-1} W_{i k}\left(Y_{i}-V_{i k}^{\prime} \theta_{0 k}\right)\right)$, where

$$
\Lambda_{1}=\left[\begin{array}{cc}
1 & -p_{d} \\
0 & 1
\end{array}\right] \quad \Lambda_{2}=\left[\begin{array}{ccc}
1 & -p_{d} & -\mu_{x} \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad \Lambda_{3}=\left[\begin{array}{cccc}
1 & -p_{d} & -\mu_{x} & p_{z} \mu_{x} \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & -p_{z} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Using the sparse structure of $E W_{i k} V_{i k}$, the $(2,2)$ elements of $A_{k}^{-1} B_{k} A_{k}^{-1}$ are then given by

$$
\operatorname{Var}\left(\operatorname{Cov}\left(Z_{i}, D_{i}\right)^{-1}\left(Z_{i}-p_{z}\right)\left(Y_{i}-V_{i k}^{\prime} \theta_{0 k}\right)\right)
$$

For $k=1,2$, this coincides with the asymptotic variance σ_{k}^{2} in Theorem 1. Theorem 1 also shows the asymptotic variance of $\hat{\beta}_{3}$ as

$$
\sigma_{3}^{2}=\operatorname{Var}\left(\operatorname{Cov}\left(Z_{i}, D_{i}\right)^{-1}\left[\left(Z_{i}-p_{z}\right)\left(Y_{i}-V_{i k}^{\prime} \theta_{0 k}\right)+p_{z}\left(1-p_{z}\right) \phi_{0}\left(X_{i}-\mu_{x}\right)\right]\right)
$$

By the moment condition $E\left(Z_{i}-p_{z}\right)\left(X_{i}-\mu_{x}\right)\left(Y_{i}-V_{i k}^{\prime} \theta_{0 k}\right)=0, \sigma_{3}^{2}$ is at least as large as

$$
\begin{equation*}
\operatorname{plim} \hat{\sigma}_{3}^{2}=\operatorname{Var}\left(\operatorname{Cov}\left(Z_{i}, D_{i}\right)^{-1}\left(Z_{i}-p_{z}\right)\left(Y_{i}-V_{i k}^{\prime} \theta_{0 k}\right)\right) \tag{18}
\end{equation*}
$$

A similar calculation shows that $\bar{\sigma}_{3}^{2} \xrightarrow{p} \sigma_{3}^{2}$. Of course one can also bootstrap.

E Proof of Proposition 1

Consider first the case of $D=Z$. For $\alpha+\beta=E(Y \mid Z=1), \alpha=E(Y \mid Z=0)$, and $\mu_{x}=E X$, the moment conditions are $E \phi_{i}\left(\alpha_{0}, \beta_{0}, \mu_{0 x}\right)=0$, where

$$
\phi_{i}\left(\alpha, \beta, \mu_{x}\right)^{\prime}=\left(Z_{i}\left(Y_{i}-\alpha-\beta\right), Z_{i}\left(X_{i}-\mu_{x}\right),\left(1-Z_{i}\right)\left(Y_{i}-\alpha\right),\left(1-Z_{i}\right)\left(X_{i}-\mu_{x}\right)\right)
$$

such that for $A_{11}=\operatorname{Var}\left(Y_{i} \mid Z_{i}=1\right), A_{12}=\operatorname{Cov}\left(Y_{i}, X_{i} \mid Z_{i}=1\right)=A_{21}^{\prime}, B_{11}=\operatorname{Var}\left(Y_{i} \mid Z_{i}=\right.$ $0), B_{12}=\operatorname{Cov}\left(Y_{i}, X_{i} \mid Z_{i}=0\right)=B_{21}^{\prime}, A_{22}=B_{22}=\operatorname{Var}\left(X_{i}\right)$,

$$
\operatorname{Var}\left(\phi_{i}(\cdot)\right)=\left(\begin{array}{cc}
p_{z} A & 0 \tag{19}\\
0 & \left(1-p_{z}\right) B
\end{array}\right) \quad A=\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right) \quad B=\left(\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right)
$$

Then $\widehat{\operatorname{Var}}\left(\phi_{i}(\cdot)\right)$ is similar to $\operatorname{Var}(\phi(\cdot))$ with p_{z}, A, B replaced by $\hat{p}_{z}, \hat{A}, \hat{B}$.
An application of the partitioned matrix inversion formula shows that the solution to eq. (5) is given by, for $F_{2}=\left(A_{22}-A_{21} A_{11}^{-1} A_{12}\right)^{-1}$ and $G_{2}=$ $\left(B_{22}-B_{21} B_{11}^{-1} B_{12}\right)^{-1}$,

$$
\begin{align*}
& \frac{1}{n} \sum_{i=1}^{n} Z_{i}\left(Y_{i}-\alpha-\beta\right)-\hat{A}_{12} \hat{A}_{22}^{-1} \frac{1}{n} \sum_{i=1}^{n} Z_{i}\left(X_{i}-\mu_{x}\right)=0 \\
& \frac{1}{n} \sum_{i=1}^{n}\left(1-Z_{i}\right)\left(Y_{i}-\alpha\right)-\hat{B}_{12} \hat{B}_{22}^{-1} \frac{1}{n} \sum_{i=1}^{n}\left(1-Z_{i}\right)\left(X_{i}-\mu_{x}\right)=0 \tag{20}\\
& -\hat{F}_{2} A_{21} A_{11}^{-1} \frac{1}{n} \sum_{i=1}^{n} Z_{i}\left(Y_{i}-\alpha-\beta\right)+F_{2} \frac{1}{n} \sum_{i=1}^{n} Z_{i}\left(X_{i}-\mu_{x}\right) \\
& -\hat{G}_{2} \hat{B}_{21} \hat{B}_{11}^{-1} \frac{1}{n} \sum_{i=1}^{n}\left(1-Z_{i}\right)\left(Y_{i}-\alpha\right)+\hat{G}_{2} \frac{1}{n} \sum_{i=1}^{n}\left(1-Z_{i}\right)\left(X_{i}-\mu_{x}\right)=0 .
\end{align*}
$$

Substitute the first two equations into the third and simplify to

$$
\begin{equation*}
\hat{A}_{22}^{-1} \frac{1}{n} \sum_{i=1}^{n} Z_{i}\left(X_{i}-\mu_{x}\right)+\hat{B}_{22}^{-1} \frac{1}{n} \sum_{i=1}^{n}\left(1-Z_{i}\right)\left(X_{i}-\mu_{x}\right)=0 \tag{21}
\end{equation*}
$$

Since $\hat{A}_{22}=\operatorname{Var}\left(X_{i}\right)+O_{P}\left(\frac{1}{\sqrt{n}}\right)=\hat{B}_{22}+O_{P}\left(\frac{1}{\sqrt{n}}\right)$, this can be used to show that $\hat{\mu}_{x}=\bar{X}+o_{P}\left(\frac{1}{\sqrt{n}}\right)$. And then

$$
\begin{aligned}
\hat{\alpha}+\hat{\beta} & =\left(\sum_{i=1}^{n} Z_{i} Y_{i}-\hat{A}_{12} \hat{A}_{22}^{-1} \sum_{i=1}^{n} Z_{i}\left(X_{i}-\mu_{x}\right)\right) / \sum_{i=1}^{n} Z_{i}+o_{P}\left(\frac{1}{\sqrt{n}}\right) \\
\hat{\alpha} & =\left(\sum_{i=1}^{n}\left(1-Z_{i}\right) Y_{i}-\hat{B}_{12} \hat{B}_{22}^{-1} \sum_{i=1}^{n}\left(1-Z_{i}\right)\left(X_{i}-\mu_{x}\right)\right) / \sum_{i=1}^{n}\left(1-Z_{i}\right)+o_{P}\left(\frac{1}{\sqrt{n}}\right)
\end{aligned}
$$

Up to $o_{P}\left(\frac{1}{\sqrt{n}}\right)$ terms, these are the intercept terms in separate regressions of Y_{i} on $X_{i}-\bar{X}$ among the control and treatment groups.

These calculations can be extended to the LATE GMM model in eq. (5), where we now define $A_{11}=\operatorname{Var}\left(Y-\alpha_{0}-\beta_{0} D \mid Z=1\right), A_{12}=\operatorname{Cov}\left(Y-\alpha_{0}-\beta_{0} D, X \mid Z=1\right)=$ $A_{21}^{\prime}, B_{11}=\operatorname{Var}\left(Y-\alpha_{0}-\beta_{0} D \mid Z=0\right), B_{12}=\operatorname{Cov}\left(Y-\alpha_{0}-\beta_{0} D, X \mid Z=0\right)=B_{21}^{\prime}, A_{22}=$ $B_{22}=\operatorname{Var}(X)$, and let $\hat{A}_{j k}, \hat{B}_{j k}$ denote their \sqrt{n} consistent estimates. Then eqs. (19) and (21) both continue to hold, leading to $\hat{\mu}_{x}=\bar{X}+o_{P}\left(\frac{1}{\sqrt{n}}\right)$. The first two equations in eq. (20) now become

$$
\begin{aligned}
& \frac{1}{n} \sum_{i=1}^{n} Z_{i}\left(Y_{i}-\alpha-\beta D_{i}\right)-\hat{A}_{12} \hat{A}_{22}^{-1} \frac{1}{n} \sum_{i=1}^{n} Z_{i}\left(X_{i}-\mu_{x}\right)=0 \\
& \frac{1}{n} \sum_{i=1}^{n}\left(1-Z_{i}\right)\left(Y_{i}-\alpha-\beta D_{i}\right)-\hat{B}_{12} \hat{B}_{22}^{-1} \frac{1}{n} \sum_{i=1}^{n}\left(1-Z_{i}\right)\left(X_{i}-\mu_{x}\right)=0,
\end{aligned}
$$

Note that given α and $\beta, \hat{A}_{12} \hat{A}_{22}^{-1}$ and $\hat{B}_{12} \hat{B}_{22}^{-1}$ are precisely the profiled $\hat{\phi}$ and $\hat{\eta}$ implied by the estimating eq. (13) for β_{3}. In other words, the above two equations are the concentrated estimating equations for α and β implied by eq. (13).

F Proof of Proposition 2

Let $W_{1 i}=\left(Z_{i}, Z_{i} V_{i}\right)^{T}$ and $W_{0 i}=\left(\left(1-Z_{i}\right),\left(1-Z_{i}\right) V_{i}\right)^{T}$. Then the normal equations corresponding to eq. (9) are

$$
\begin{array}{ll}
\frac{1}{n} \sum_{i=1}^{n} W_{1 i}\left(Y_{i}-\hat{\gamma}_{1}-\hat{\vartheta}_{1} V_{i}\right)=0, & \frac{1}{n} \sum_{i=1}^{n} W_{0 i}\left(Y_{i}-\hat{\gamma}_{0}-\hat{\vartheta}_{0} V_{i}\right)=0 . \\
\frac{1}{n} \sum_{i=1}^{n} W_{1 i}\left(D_{i}-\hat{\tau}_{1}-\hat{\zeta}_{1} V_{i}\right)=0, & \frac{1}{n} \sum_{i=1}^{n} W_{0 i}\left(D_{i}-\hat{\tau}_{0}-\hat{\zeta}_{0} V_{i}\right)=0 .
\end{array}
$$

Taking a linear combination using $\hat{\beta}_{A L}=A v \widehat{\text { LA }} T E$,

$$
\begin{aligned}
& \frac{1}{n} \sum_{i=1}^{n} W_{1 i}\left(Y_{i}-\hat{\gamma}_{1}-\hat{\vartheta}_{1} V_{i}-\hat{\beta}_{A L}\left(D_{i}-\hat{\tau}_{1}-\hat{\zeta}_{1} V_{i}\right)\right)=0 \\
& \frac{1}{n} \sum_{i=1}^{n} W_{0 i}\left(Y_{i}-\hat{\gamma}_{0}-\hat{\vartheta}_{0} V_{i}-\hat{\beta}_{A L}\left(D_{i}-\hat{\tau}_{0}-\hat{\zeta}_{0} V_{i}\right)\right)=0
\end{aligned}
$$

We rearrange this into

$$
\begin{aligned}
& \frac{1}{n} \sum_{i=1}^{n} W_{1 i}\left(Y_{i}-\hat{\gamma}_{1}+\hat{\beta}_{A L} \hat{\tau}_{1}+\left(\hat{\beta}_{A L} \hat{\zeta}_{1}-\hat{\vartheta}_{1}\right) \bar{V}-\hat{\beta}_{A L} D_{i}-\left(\hat{\beta}_{A L} \hat{\zeta}_{1}-\hat{\vartheta}_{1}\right)\left(V_{i}-\bar{V}\right)\right)=0 \\
& \frac{1}{n} \sum_{i=1}^{n} W_{0 i}\left(Y_{i}-\hat{\gamma}_{0}+\hat{\beta}_{A L} \hat{\tau}_{0}+\left(\hat{\beta}_{A L} \hat{\zeta}_{0}-\hat{\vartheta}_{0}\right) \bar{V}-\hat{\beta}_{A L} D_{i}-\left(\hat{\beta}_{A L} \hat{\zeta}_{0}-\hat{\vartheta}_{0}\right)\left(V_{i}-\bar{V}\right)\right)=0
\end{aligned}
$$

By the definition in eq. (10),

$$
\hat{v}=\hat{\gamma}_{1}-\hat{\beta}_{A L} \hat{\tau}_{1}-\left(\hat{\beta}_{A L} \hat{\zeta}_{1}-\hat{\vartheta}_{1}\right) \bar{V}=\hat{\gamma}_{0}-\hat{\beta}_{A L} \hat{\tau}_{0}-\left(\hat{\beta}_{A L} \hat{\zeta}_{0}-\hat{\vartheta}_{0}\right) \bar{V}
$$

The normal equations therefore take the form of

$$
\begin{align*}
& \frac{1}{n} \sum_{i=1}^{n} W_{1 i}\left(Y_{i}-\hat{v}-\hat{\beta}_{A L} D_{i}-\left(\hat{\beta}_{A L} \hat{\zeta}_{1}-\hat{\vartheta}_{1}\right)\left(V_{i}-\bar{V}\right)\right)=0 \\
& \frac{1}{n} \sum_{i=1}^{n} W_{0 i}\left(Y_{i}-\hat{v}-\hat{\beta}_{A L} D_{i}-\left(\hat{\beta}_{A L} \hat{\zeta}_{0}-\hat{\vartheta}_{0}\right)\left(V_{i}-\bar{V}\right)\right)=0 \tag{22}
\end{align*}
$$

Next, consider the normal equations determining the interactive $\hat{\beta}_{\infty}$. For $W_{i}=$ $\left(W_{1 i}, W_{0 i}\right)^{T}$,

$$
\frac{1}{n} \sum_{i=1}^{n} W_{i}\left(Y_{i}-\hat{\alpha}-\hat{\beta}_{\infty} D_{i}-\hat{\eta}\left(V_{i}-\bar{V}\right)-\hat{\phi} Z_{i}\left(V_{i}-\bar{V}\right)\right)=0
$$

This can be rewritten as

$$
\begin{align*}
& \frac{1}{n} \sum_{i=1}^{n} W_{1 i}\left(Y_{i}-\hat{\alpha}-\hat{\beta}_{\infty} D_{i}-(\hat{\eta}+\hat{\phi})\left(V_{i}-\bar{V}\right)\right)=0 \\
& \frac{1}{n} \sum_{i=1}^{n} W_{0 i}\left(Y_{i}-\hat{\alpha}-\hat{\beta}_{\infty} D_{i}-\hat{\eta}\left(V_{i}-\bar{V}\right)\right)=0 \tag{23}
\end{align*}
$$

Then eq. (23) can be satisfied through eq. (22) by setting

$$
\hat{\alpha}=\hat{v}, \quad \hat{\beta}_{\infty}=\hat{\beta}_{A L}, \quad \hat{\eta}=\hat{\beta}_{A L} \hat{\zeta}_{0}-\hat{\vartheta}_{0}, \quad \hat{\phi}=\hat{\beta}_{A L} \hat{\zeta}_{1}-\hat{\vartheta}_{1}-\hat{\eta} .
$$

G Proof of Proposition 3

When $D=Z$, Hahn (1998) shows that $\sigma_{\infty}^{2}=\operatorname{Var}\left(\psi_{\infty}\right)$, where

$$
\begin{aligned}
\psi_{\infty} & =\frac{D}{p}\left(Y_{1}-E\left(Y_{1} \mid X\right)\right)-\frac{1-D}{1-p}\left(Y_{0}-E\left(Y_{0} \mid X\right)\right)+\left(E\left(Y_{1}-Y_{0} \mid X\right)-E\left(Y_{1}-Y_{0}\right)\right) \\
& =(D-p)\left[\frac{Y_{1}-E\left(Y_{1} \mid X\right)}{p}+\frac{Y_{0}-E\left(Y_{0} \mid X\right)}{1-p}\right]+Y_{1}-Y_{0}-E\left(Y_{1}-Y_{0}\right)
\end{aligned}
$$

We can then use ψ_{3} in the proof of Corollary 1 to show that

$$
\operatorname{Cov}\left(\psi_{3} /\left(p_{z}\left(1-p_{z}\right)\right)-\psi_{\infty}, \psi_{\infty}\right)=0
$$

More generally when $Z \neq D$, the LATE efficiency bound was calculated in Frolich (2006) and Hong and Nekipelov (2010) (Lemma 1 and Thm 4), with $\sigma_{\infty}^{2}=$ $\operatorname{Var}\left(\psi_{\infty}\right)$, and

$$
\begin{aligned}
\psi_{\infty}=\frac{1}{P\left(D_{1}>D_{0}\right)}\{ & \frac{Z}{p_{z}}(Y-E(Y \mid Z=1, X))+E(Y \mid Z=1, X) \\
& -\frac{1-Z}{1-p_{z}}(Y-E(Y \mid Z=0, X))-E(Y \mid Z=0, X) \\
& -\left(\frac{Z}{p_{z}}(D-E(D \mid Z=1, X))+E(D \mid Z=1, X)\right. \\
& \left.\left.\quad-\frac{1-Z}{1-p_{z}}(D-E(D \mid Z=0, X))-E(D \mid Z=0, X)\right) \beta\right\}
\end{aligned}
$$

where $P\left(D_{1}>D_{0}\right)=P(D=1 \mid Z=1)-P(D=1 \mid Z=0)$. We can rewrite this as

$$
\begin{align*}
P\left(D_{1}>D_{0}\right) \psi_{\infty} & =\frac{Z}{p_{z}}\left(t_{1}-E\left(t_{1} \mid X\right)\right)-\frac{1-Z}{1-p_{z}}\left(t_{0}-E\left(t_{0} \mid X\right)\right)+E\left(t_{1}-t_{0} \mid X\right) \\
& =\left(Z-p_{z}\right)\left\{\frac{t_{1}-E\left(t_{1} \mid X\right)}{p_{z}}+\frac{t_{0}-E\left(t_{0} \mid X\right)}{1-p_{z}}\right\}+t_{1}-t_{0} . \tag{24}
\end{align*}
$$

Again comparing this to ψ_{3} in the proof of Corollary 1 shows that

$$
\operatorname{Cov}\left(\psi_{3} /\left(P\left(D_{1}>D_{0}\right) p_{z}\left(1-p_{z}\right)\right)-\psi_{\infty}, \psi_{\infty}\right)=0
$$

The comparison between ψ_{2} and ψ_{3} in eq. (17) can also be understood in the context of doubly robust estimators, which use influence functions of the form similar to ψ_{∞} but without requiring p_{z} to be constant. Define $Q(X) \equiv P(Z=1 \mid X)$. In the case of $D=Z$,

$$
\begin{aligned}
\phi_{\infty} & =\frac{D}{Q(X)}\left(Y-E\left(Y_{1} \mid X\right)\right)-\frac{1-D}{1-Q(X)}\left(Y-E\left(Y_{0} \mid X\right)\right)+(E(\Delta Y \mid X)-E \Delta Y) \\
& =(D-Q(X))\left[\frac{Y_{1}-E\left(Y_{1} \mid X\right)}{Q(X)}+\frac{Y_{0}-E\left(Y_{0} \mid X\right)}{1-Q(X)}\right]+\left(Y_{1}-Y_{0}-\beta\right)
\end{aligned}
$$

The estimators with influence function ϕ_{∞} are consistent as long as either $Q(X)$ or the pair of $E\left(Y_{1} \mid X\right), E\left(Y_{0} \mid X\right)$ are correctly specified. Under complete randomization and with $Q(X)$ specified as p_{z}, the P-score model is obviously correctly specified. Therefore $E\left(Y_{1} \mid X\right)$ and $E\left(Y_{0} \mid X\right)$, being linear projections on (1 $V(X)$), have no effect on consistency. However, between two misspecified conditional mean models, the first pair in ψ_{3} is a more efficient projection that induces a smaller variance than the linear projection in ψ_{2}. Similarly, in the general LATE case when $D \neq Z$, doubly robust estimators use influence functions of the form

$$
\phi_{\infty}=(D-\tilde{Q}(X))\left[\frac{t_{1}-E\left(t_{1} \mid X\right)}{Q(X)}+\frac{t_{0}-E\left(t_{0} \mid X\right)}{1-Q(X)}\right]+\left(t_{1}-t_{0}-\beta\right) .
$$

where $E\left(t_{1} \mid X\right)=E\left(Y_{1}^{*} \mid X\right)-\beta_{0} E\left(D_{1} \mid X\right)$ and $E\left(t_{0} \mid X\right)=E\left(Y_{0}^{*} \mid X\right)-\beta_{0} E\left(D_{0} \mid X\right)$. These estimators are consistent as long as either $Q(X)$ or the set of

$$
E\left(Y_{1}^{*} \mid X\right), E\left(Y_{0}^{*} \mid X\right), E\left(D_{1} \mid X\right), E\left(D_{0} \mid X\right)
$$

are correctly specified. Among different misspecified linear approximations to $E\left(t_{1} \mid X\right)$ and $E\left(t_{0} \mid X\right)$, the least square projection is more efficient.

Similar to eqs. (3) and (4), σ_{∞}^{2} can be consistently estimated under suitable regularity conditions (such as those in Newey (1997)) by

$$
\bar{\sigma}_{\infty}^{2}=\widehat{\operatorname{Cov}}_{Z, D}^{-2} \frac{1}{n} \sum_{i=1}^{n} \bar{\epsilon}_{i \infty}^{2} \text { where } \bar{\epsilon}_{i \infty}=\left(Z_{i}-\hat{p}_{z}\right) \hat{\epsilon}_{i \infty}+\hat{p}_{z}\left(1-\hat{p}_{z}\right) \hat{\phi}_{\infty}\left(V_{i}-\bar{V}\right)
$$

and $\hat{\epsilon}_{i \infty}=Y_{i}-\hat{\alpha}-\hat{\beta}_{\infty} D_{i}-\hat{\eta}\left(V_{i}-\bar{V}\right)-\hat{\phi} Z_{i}\left(V_{i}-\bar{V}\right)$. If we write

$$
Y_{i}-\hat{\beta}_{\infty} D_{i}=\left(1-Z_{i}\right)\left(\hat{\alpha}+\hat{\eta}\left(V_{i}-\bar{V}\right)\right)+Z_{i}\left(\hat{\alpha}+(\hat{\eta}+\hat{\phi})\left(V_{i}-\bar{V}\right)\right)+\hat{\epsilon}_{i \infty}
$$

then we expect that uniformly in X_{i},

$$
\begin{aligned}
\hat{\alpha}+\hat{\eta}\left(V_{i}-\bar{V}\right) & =E\left(Y-\beta D \mid Z=0, X_{i}\right)+o_{P}(1)=E\left(t_{0 i} \mid X_{i}\right)+o_{P}(1) \\
\hat{\alpha}+(\hat{\eta}+\hat{\phi})\left(V_{i}-\bar{V}\right) & =E\left(Y-\beta D \mid Z=1, X_{i}\right)+o_{P}(1)=E\left(t_{1 i} \mid X_{i}\right)+o_{P}(1)
\end{aligned}
$$

Therefore $\hat{\phi}\left(V_{i}-\bar{V}\right)=E\left(t_{1 i}-t_{0 i} \mid X_{i}\right)+o_{P}(1), \hat{\epsilon}_{i \infty}=Z_{i}\left(t_{1 i}-E\left(t_{1 i} \mid X_{i}\right)\right)+$ $\left(1-Z_{i}\right)\left(t_{0 i}-E\left(t_{0 i} \mid X_{i}\right)\right)$,

$$
\begin{aligned}
\bar{\epsilon}_{i \infty}= & \left(Z_{i}-p_{z}\right)\left(\left(1-p_{z}\right)\left(t_{1 i}-E\left(t_{1 i} \mid X_{i}\right)\right)+p_{z}\left(t_{0 i}-E\left(t_{0 i} \mid X_{i}\right)\right)\right) \\
& +p_{z}\left(1-p_{z}\right)\left(t_{1 i}-t_{0 i}\right)+o_{P}(1)
\end{aligned}
$$

which coincides with the semiparametric asymptotic influence function, and includes the CI model as a special case when $D=Z$.

H Proof of Proposition 4

Recall that $\sqrt{n}\left(\hat{\beta}_{1}-\beta_{0}\right)=\operatorname{Cov}_{n}(Z, D)^{-1} \sqrt{n} \operatorname{Cov}_{n}\left(Z, Y-D \beta_{0}\right)$. It can be shown that

$$
\begin{aligned}
\operatorname{Cov}_{n}(Z, D) & =\frac{1}{n} \sum_{i=1}^{n} Z_{i} D_{i}-\frac{1}{n} \sum_{i=1}^{n} Z_{i} \frac{1}{n} \sum_{i=1}^{n} D_{i} \\
& =\hat{p}_{z}\left(1-\hat{p}_{z}\right)\left[\frac{\frac{1}{n} \sum_{i=1}^{n} Z_{i} D_{1 i}}{\hat{p}_{z}}-\frac{\frac{1}{n} \sum_{i=1}^{n}\left(1-Z_{i}\right) D_{0 i}}{1-\hat{p}_{z}}\right] \\
& =p_{z}\left(1-p_{z}\right) P\left(D_{1}>D_{0}\right)+o_{P}(1) .
\end{aligned}
$$

where the last line follows from Assumption 8.2. Furthermore,

$$
\begin{aligned}
\operatorname{Cov}_{n}(Y, Z)= & \frac{1}{n} \sum_{i=1}^{n} Z_{i} Y_{i}-\frac{1}{n} \sum_{i=1}^{n} Z_{i} \frac{1}{n} \sum_{i=1}^{n} Y_{i}=\hat{p}_{z}\left(1-\hat{p}_{z}\right) \\
& {\left[\frac{\frac{1}{n} \sum_{i=1}^{n} Z_{i} Y_{1 i}^{*}}{\hat{p}_{z}}-\frac{\frac{1}{n} \sum_{i=1}^{n}\left(1-Z_{i}\right) Y_{0 i}^{*}}{1-\hat{p}_{z}}\right] }
\end{aligned}
$$

Next we consider

$$
\begin{aligned}
& \sqrt{n}\left(\operatorname{Cov}_{n}(Y, Z)-\operatorname{Cov}_{n}(D, Z) \beta_{0}\right) \\
& =\hat{p}_{z}\left(1-\hat{p}_{z}\right) \frac{1}{\sqrt{n}} \sum_{i=1}^{n}\left[\frac{Z_{i} t_{1 i}}{\hat{p}_{z}}-\frac{\left(1-Z_{i}\right) t_{0 i}}{1-\hat{p}_{z}}\right]
\end{aligned}
$$

$$
\begin{aligned}
= & \hat{p}_{z}\left(1-\hat{p}_{z}\right) \frac{1}{\sqrt{n}} \sum_{i=1}^{n}\left(\frac{Z_{i} t_{1 i}}{\hat{p}_{z}}+\frac{Z_{i} t_{0 i}}{1-\hat{p}_{z}}-\left(t_{1 i}-t_{0 i}\right)-\frac{t_{0 i}}{1-\hat{p}_{z}}\right) \\
& +\hat{p}_{z}\left(1-\hat{p}_{z}\right) \frac{1}{\sqrt{n}} \sum_{i=1}^{n}\left(t_{1 i}-t_{0 i}\right) \\
= & \hat{p}_{z}\left(1-\hat{p}_{z}\right) \frac{1}{\sqrt{n}} \sum_{i=1}^{n}\left(Z_{i}-\hat{p}_{z}\right)\left(\frac{t_{1 i}}{\hat{p}_{z}}+\frac{t_{0 i}}{1-\hat{p}_{z}}\right)+\hat{p}_{z}\left(1-\hat{p}_{z}\right) \frac{1}{\sqrt{n}} \sum_{i=1}^{n}\left(t_{1 i}-t_{0 i}\right) \\
= & p_{z}\left(1-p_{z}\right) \frac{1}{\sqrt{n}} \sum_{i=1}^{n}\left(Z_{i}-p_{z}\right)\left(\frac{t_{1 i}-\mathbb{E}\left[t_{1 i}\right]}{p_{z}}+\frac{t_{0 i}-\mathbb{E}\left[t_{0 i}\right]}{1-p_{z}}\right) \\
& +p_{z}\left(1-p_{z}\right) \frac{1}{\sqrt{n}} \sum_{i=1}^{n}\left(t_{1 i}-t_{0 i}\right)+R_{n}
\end{aligned}
$$

where

$$
\begin{aligned}
R_{n} & =\frac{1}{\sqrt{n}} \sum_{i=1}^{n}\left\{\left(Z_{i}-\hat{p}_{z}\right)\left(\left(p_{z}-\hat{p}_{z}\right)\left(t_{1 i}-t_{0 i}\right)+\left(\left(1-p_{z}\right) \mathbb{E}\left[t_{1 i}\right]+p_{z} \mathbb{E}\left[t_{0 i}\right]\right)\right)\right\} \\
& +\frac{1}{\sqrt{n}} \sum_{i=1}^{n}\left(p_{z}-\hat{p}_{z}\right)\left(\left(1-p_{z}\right) t_{1 i}+p_{z} t_{0 i}-\left(\left(1-p_{z}\right) \mathbb{E}\left[t_{1 i}\right]+p_{z} \mathbb{E}\left[t_{0 i}\right]\right)\right) \\
& +\left[\hat{p}_{z}\left(1-\hat{p}_{z}\right)-p_{z}\left(1-p_{z}\right)\right] \frac{1}{\sqrt{n}} \sum_{i=1}^{n}\left(t_{1 i}-t_{0 i}\right) \\
& =\left(p_{z}-\hat{p}_{z}\right) \frac{1}{\sqrt{n}} \sum_{i=1}^{n}\left(Z_{i}-p_{z}\right)\left(t_{1 i}-t_{0 i}\right)+\left(p_{z}-\hat{p}_{z}\right)^{2} \frac{1}{\sqrt{n}} \sum_{i=1}^{n}\left(t_{1 i}-t_{0 i}\right) \\
& +\left(p_{z}-\hat{p}_{z}\right) \frac{1}{\sqrt{n}} \sum_{i=1}^{n}\left(\left(1-p_{z}\right)\left(t_{1 i}-\mathbb{E}\left[t_{1 i}\right]\right)+p_{z}\left(t_{0 i}-\mathbb{E}\left[t_{0 i}\right]\right)\right) \\
& +\left[\hat{p}_{z}\left(1-\hat{p}_{z}\right)-p_{z}\left(1-p_{z}\right)\right] \frac{1}{\sqrt{n}} \sum_{i=1}^{n}\left(t_{1 i}-t_{0 i}\right)
\end{aligned}
$$

Using Assumption 8, each term can be shown to be $o_{P}(1)$, so that $R_{n}=o_{P}(1)$.
From this point on the variance becomes different depending on whether $S=$ 1 or $S>1$. Recall that $\omega_{i}=\left[\frac{t_{1 i}-E t_{1 i}}{p_{z}}+\frac{t_{0 i}-E t_{0 i}}{1-p_{z}}\right]$ and $\omega(s)=E\left[\omega_{i} \mid X_{i} \in s\right]$. First note that $\frac{1}{\sqrt{n}} \sum_{i=1}^{n}\left(t_{1 i}-t_{0 i}\right)$ is asymptotically orthogonal to $\frac{1}{\sqrt{n}} \sum_{i=1}^{n}\left(Z_{i}-p_{z}\right) \omega_{i}$ under assumptions 8.1 and 8.2.

$$
\operatorname{Cov}\left[\sum_{s \in \mathcal{S}} \frac{1}{\sqrt{n}} \sum_{i=1}^{n} 1\left(X_{i} \in s\right)\left(Z_{i}-p_{z}\right) \omega_{i}, \sum_{s \in \mathcal{S}} \frac{1}{\sqrt{n}} \sum_{i=1}^{n} 1\left(X_{i} \in S\right)\left(t_{1 i}-t_{0 i}\right)\right]
$$

$$
\begin{aligned}
& =\sum_{s \in \mathcal{S}} \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \mathbb{E}\left[1\left(X_{i} \in s\right)\left(Z_{i}-p_{z}\right) \omega_{i}\left(t_{1 i}-t_{0 i}\right)\right] \\
& =\sum_{s \in \mathcal{S}} \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \mathbb{E}\left[1\left(X_{i} \in s\right)\left(\mathbb{E}\left[Z_{i} \mid X_{i} \in s, Y_{1 i}, Y_{0 i}, D_{1 i}, D_{0 i}\right]-p_{z}\right) \omega_{i}\left(t_{1 i}-t_{0 i}\right)\right] \\
& =\sum_{s \in \mathcal{S}} \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \mathbb{E}\left[1\left(X_{i} \in s\right)\left(\mathbb{E}\left[Z_{i} \mid X_{i} \in s\right]-p_{z}\right) \omega_{i}\left(t_{1 i}-t_{0 i}\right)\right] \\
& =O_{\text {a.s. }}\left(\frac{1}{\sqrt{n}}\right)
\end{aligned}
$$

Then write the first part of the influence function as

$$
\begin{align*}
& \frac{1}{\sqrt{n}} \sum_{i=1}^{n}\left(Z_{i}-p_{z}\right) \omega_{i} \\
= & \frac{1}{\sqrt{n}} \sum_{i=1}^{n}\left(Z_{i}-p_{z}\right)\left(\omega_{i}-\omega(s)\right)+\frac{1}{\sqrt{n}} \sum_{i=1}^{n}\left(Z_{i}-p_{z}\right) \omega(s) \\
= & \sum_{s \in S} \frac{1}{\sqrt{n}} \sum_{i=1}^{n} 1\left(X_{i} \in s\right)\left(Z_{i}-p_{z}\right)\left(\omega_{i}-\omega(s)\right)+\sum_{s \in S} \frac{1}{\sqrt{n}} \sum_{i=1}^{n} 1\left(X_{i} \in s\right)\left(Z_{i}-p_{z}\right) \omega(s) . \tag{25}
\end{align*}
$$

First note that the two sums are orthogonal:

$$
\begin{aligned}
\operatorname{Cov} & {\left[\sum_{s \in \mathcal{S}} \frac{1}{\sqrt{n}} \sum_{i=1}^{n} 1\left(X_{i} \in s\right)\left(Z_{i}-p_{z}\right)\left(\omega_{i}-\omega(s)\right), \sum_{s \in \mathcal{S}} \frac{1}{\sqrt{n}} \sum_{i=1}^{n} 1\left(X_{i} \in s\right)\left(Z_{i}-p_{z}\right) \omega(s)\right] } \\
& =\sum_{s \in \mathcal{S}} \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \operatorname{Cov}\left[1\left(X_{i} \in s\right)\left(Z_{i}-p_{z}\right)\left(\omega_{i}-\omega(s)\right), 1\left(X_{i} \in s\right)\left(Z_{i}-p_{z}\right) \omega(s)\right] \\
& =\sum_{s \in \mathcal{S}} \frac{1}{\sqrt{n}} \sum_{i=1}^{n} E\left[1\left(X_{i} \in s\right)\left(Z_{i}-p_{z}\right)^{2}\left(\omega_{i}-\omega(s)\right) \omega(s)\right] \\
& =\sum_{s \in \mathcal{S}} \frac{1}{\sqrt{n}} \sum_{i=1}^{n} E\left[1\left(X_{i} \in s\right)\left(Z_{i}-p_{z}\right)^{2}\left(\omega_{i}-E\left[\omega_{i} \mid X_{i} \in s, Z_{i}\right]\right) E\left[\omega_{i} \mid X_{i} \in s, Z_{i}\right]\right] \\
& =\sum_{s \in \mathcal{S}} \frac{1}{\sqrt{n}} \sum_{i=1}^{n} E\left[1\left(X_{i} \in s\right)\left(Z_{i}-p_{z}\right)^{2}\left(\omega_{i}-E\left[\omega_{i} \mid X_{i} \in s\right]\right) E\left[\omega_{i} \mid X_{i} \in s\right]\right]=0
\end{aligned}
$$

We now use arguments similar to those in Lemma B. 2 of BCS 2017a to derive the limiting distribution of eq. (25). The distribution of $U=$
$\frac{1}{\sqrt{n}} \sum_{i=1}^{n}\left(Z_{i}-p_{z}\right)\left(\omega_{i}-\omega(s)\right)$ is the same as the distribution of the same quantity where the observations are first ordered by strata and then by $Z_{i}=1$ and $Z_{i}=0$ within strata. Let $n_{z}(s)$ be the number of observations in strata s which have $Z_{i}=z \in\{0,1\}$, and let $p(s)=P\left(X_{i} \in s\right), N(s)=\sum_{i=1}^{n} I\left\{S_{i}<s\right\}$, and $F(s)=P\left\{S_{i}<s\right\}$. Independently for each s and independently of $\left(Z^{(n)}, S^{(n)}\right)$, let $\left\{\omega_{i}^{s}: 1 \leq i \leq n\right\}$ be i.i.d. with marginal distribution equal to the distribution of $\omega_{i} \mid X_{i} \in s$. Define

$$
\tilde{U}=\frac{1}{\sqrt{n}} \sum_{s \in \mathcal{S}}\left(\sum_{i=n \frac{N(s)}{n}+1}^{n\left(\frac{N(s)}{n}+\frac{n_{1}(s)}{n}\right)}\left(\omega_{i}^{s}-\omega(s)\right)\left(1-p_{z}\right)+\sum_{i=n\left(\frac{N(s)}{n}+\frac{n_{1}(s)}{n}\right)+1}^{n\left(\frac{N(s)}{n}+\frac{n(s)}{n}\right)}\left(\omega_{i}^{s}-\omega(s)\right)\left(-p_{z}\right)\right)
$$

By construction, $\left\{U \mid S^{(n)}, Z^{(n)}\right\} \stackrel{d}{=}\left\{\tilde{U} \mid S^{(n)}, Z^{(n)}\right\}$ which implies $U \stackrel{d}{=} \tilde{U}$. Next define

$$
U^{*}=\frac{1}{\sqrt{n}} \sum_{s \in \mathcal{S}}\left(\sum_{i=\lfloor n F(s)\rfloor+1}^{\left\lfloor n\left(F(s)+p(s) p_{z}\right)\right\rfloor}\left(\omega_{i}^{s}-\omega(s)\right)\left(1-p_{z}\right)+\sum_{i=\left\lfloor n\left(F(s)+p(s) p_{z}\right)\right\rfloor+1}^{\lfloor n(F(s)+p(s))\rfloor}\left(\omega_{i}^{s}-\omega(s)\right)\left(-p_{z}\right)\right)
$$

Using properties of Brownian motion,

$$
\begin{aligned}
& \frac{1}{\sqrt{n}} \sum_{i=\lfloor n F(s)\rfloor+1}^{\left\lfloor n\left(F(s)+p(s) p_{z}\right)\right\rfloor}\left(\omega_{i}^{s}-\omega(s)\right)\left(1-p_{z}\right) \xrightarrow{d} N\left(0, p(s) p_{z}\left(1-p_{z}\right)^{2} \mathbb{E}\left[\left(\omega_{i}^{s}-\omega(s)\right)^{2}\right]\right) \\
& \frac{1}{\sqrt{n}} \sum_{i=\left\lfloor n\left(F(s)+p(s) p_{z}\right)\right\rfloor+1}^{\lfloor n(F(s)+p(s))\rfloor}\left(\omega_{i}^{s}-\omega(s)\right)\left(-p_{z}\right) \xrightarrow{d} N\left(0, p(s)\left(1-p_{z}\right)\left(p_{z}\right)^{2} \mathbb{E}\left[\left(\omega_{i}^{s}-\omega(s)\right)^{2}\right]\right)
\end{aligned}
$$

Since the two sums are independent, $\omega_{i}^{s}-\omega(s)$ are independent across i and s, and $\mathbb{E}\left[\left(\omega_{i}^{s}-\omega(s)\right)^{2}\right]=\mathbb{E}\left[\left(\omega_{i}-\omega(s)\right)^{2} \mid X_{i} \in s\right]$,

$$
U^{*} \xrightarrow{d} N\left(0, p_{z}\left(1-p_{z}\right) \sum_{s \in \mathcal{S}} p(s) \mathbb{E}\left[\left(\omega_{i}-\omega(s)\right)^{2} \mid X_{i} \in s\right]\right)
$$

Furthermore, since $\left(\frac{N(s)}{n}, \frac{n_{1}(s)}{n}\right) \xrightarrow{p}\left(F(s), p_{z} p(s)\right)$, by the continuous mapping theorem,

$$
\tilde{U}-U^{*} \xrightarrow{p} 0
$$

Therefore,

$$
\frac{1}{\sqrt{n}} \sum_{i=1}^{n}\left(Z_{i}-p_{z}\right)\left(\omega_{i}-\omega(s)\right) \xrightarrow{d} N(\underbrace{0, p_{z}\left(1-p_{z}\right) \sum_{s \in \mathcal{S}} p(s) \mathbb{E}\left[\left(\omega_{i}-\omega(s)\right)^{2} \mid X_{i} \in s\right]}_{\Omega_{1}})
$$

For the second term, it suffices to use Assumption 8.2 to show that
$\frac{1}{\sqrt{n}} \sum_{i=1}^{n}\left(Z_{i}-p_{z}\right) \omega(s)=\sum_{s \in \mathcal{S}} \frac{1}{\sqrt{n}} \sum_{i=1}^{n} 1\left(X_{i} \in s\right)\left(Z_{i}-p_{z}\right) \omega(s) \xrightarrow{d} N(\underbrace{\sum_{s \in \mathcal{S}} \tau(s) p(s) \omega(s)^{2}}_{\Omega_{2}})$
Lastly, note that $\frac{1}{\sqrt{n}} \sum_{i=1}^{n}\left(t_{1 i}-t_{0 i}\right) \xrightarrow{d} N(0, \underbrace{\operatorname{Var}\left[t_{1 i}-t_{0 i}\right]}_{\Omega_{3}})$. Then $\sqrt{n}\left(\hat{\beta}_{1}-\beta_{0}\right) \xrightarrow{d}$ $N\left(0, P\left(D_{1}>D_{0}\right)^{-2}\left(\Omega_{1}+\Omega_{2}+\Omega_{3}\right)\right)$.

As in Section 2, it is straightforward to show that the 2SLS robust variance is consistent for $P\left(D_{1}>D_{0}\right)^{-2}$ times

$$
\begin{aligned}
& \operatorname{plim} \frac{1}{n} \sum_{i=1}^{n}\left[\left(Z_{i}-p_{z}\right)\left[\omega_{i}\right]+\left(t_{1 i}-t_{0 i}\right)\right]^{2} \\
& =\operatorname{plim} \frac{1}{n} \sum_{i=1}^{n}\left(\left(Z_{i}-p_{z}\right) \omega_{i}\right)^{2}+\operatorname{plim} \frac{1}{n} \sum_{i=1}^{n}\left(t_{1 i}-t_{0 i}\right)^{2} \\
& =\operatorname{plim} \frac{1}{n} \sum_{i=1}^{n}\left(Z_{i}-p_{z}\right)^{2}\left(\omega_{i}-\omega(s)\right)^{2}+\operatorname{plim} \frac{1}{n} \sum_{i=1}^{n}\left(Z_{i}-p_{z}\right)^{2} \omega(s)^{2}+\operatorname{plim} \frac{1}{n} \sum_{i=1}^{n}\left(t_{1 i}-t_{0 i}\right)^{2}
\end{aligned}
$$

Independently for each s and independently of $\left(Z^{(n)}, S^{(n)}\right)$, let $\left\{\omega_{i}^{s}: 1 \leq i \leq n\right\}$ be i.i.d with marginal distribution equal to the distribution of $\omega_{i} \mid X_{i} \in s$. Using similar arguments as those in Lemma B. 3 of BCS 2017a,

$$
\begin{aligned}
& \frac{1}{n} \sum_{i=1}^{n}\left(Z_{i}-p_{z}\right)^{2}\left(\omega_{i}-\omega(s)\right)^{2} \\
= & \sum_{s \in \mathcal{S}}\left(\frac{1}{n} \sum_{i=1}^{n_{1}(s)}\left(1-p_{z}\right)^{2}\left(\omega_{i}^{s}-\omega(s)\right)^{2}+\frac{1}{n} \sum_{i=1}^{n_{0}(s)}\left(-p_{z}\right)^{2}\left(\omega_{i}^{s}-\omega(s)\right)^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{s \in \mathcal{S}}\left(\frac{n_{1}(s)}{n} \frac{1}{n_{1}(s)} \sum_{i=1}^{n_{1}(s)}\left(1-p_{z}\right)^{2}\left(\omega_{i}^{s}-\omega(s)\right)^{2}+\frac{n_{0}(s)}{n} \frac{1}{n_{0}(s)} \sum_{i=1}^{n_{0}(s)}\left(-p_{z}\right)^{2}\left(\omega_{i}^{s}-\omega(s)\right)^{2}\right) \\
& \xrightarrow{p} \sum_{s \in \mathcal{S}}\left\{p_{z} p(s)\left(1-p_{z}\right)^{2} \mathbb{E}\left[\left(\omega_{i}^{s}-\omega(s)\right)^{2}\right]+\left(1-p_{z}\right) p(s)\left(-p_{z}\right)^{2} \mathbb{E}\left[\left(\omega_{i}^{s}-\omega(s)\right)^{2}\right]\right\} \\
& =p_{z}\left(1-p_{z}\right) \sum_{s \in \mathcal{S}} p(s) \mathbb{E}\left[\left(\omega_{i}-\omega(s)\right)^{2} \mid X_{i} \in s\right]
\end{aligned}
$$

The key steps are to use the Almost Sure Representation theorem to construct $\frac{\tilde{n}_{1}(s)}{n} \stackrel{d}{=} \frac{n_{1}(s)}{n}$ such that $\frac{\tilde{n}_{1}(s)}{n} \xrightarrow[\rightarrow]{\text { a.s. }} p_{z} p(s)$ and then to note that by independence of $\left(Z^{(n)}, S^{(n)}\right)$ and $\left\{\omega_{i}^{s}: 1 \leq i \leq n\right\}$, for any $\epsilon>0$,

$$
\begin{aligned}
& \mathbb{P}\left\{\left|\frac{1}{n_{1}(s)} \sum_{i=1}^{n_{1}(s)}\left(\omega_{i}^{s}-\omega(s)\right)^{2}-\mathbb{E}\left[\left(\omega_{i}^{s}-\omega(s)\right)^{2}\right]\right|>\epsilon\right\} \\
= & \mathbb{E}\left[\mathbb{P}\left\{\left.\left|\frac{1}{n \frac{\tilde{n}_{1}(s)}{n}} \sum_{i=1}^{n \frac{\tilde{n}_{1}(s)}{n}}\left(\omega_{i}^{s}-\omega(s)\right)^{2}-\mathbb{E}\left[\left(\omega_{i}^{s}-\omega(s)\right)^{2}\right]\right|>\epsilon \right\rvert\, \frac{\tilde{n}_{1}(s)}{n}\right\}\right]
\end{aligned}
$$

Also, note that by the weak law of large numbers, for any sequence $n_{k} \rightarrow \infty$ as $k \rightarrow \infty$,

$$
\frac{1}{n_{k}} \sum_{i=1}^{n_{k}}\left(\omega_{i}^{s}-\omega(s)\right)^{2} \xrightarrow{p} \mathbb{E}\left[\left(\omega_{i}^{s}-\omega(s)\right)^{2}\right]
$$

Since $n \frac{\tilde{n}_{1}(s)}{n} \rightarrow \infty$ almost surely, by independence of $\frac{\tilde{n}_{1}(s)}{n}$ and $\left\{\omega_{i}^{s}: 1 \leq i \leq n\right\}$,

$$
\mathbb{P}\left\{\left.\left|\frac{1}{n \frac{\tilde{n}_{1}(s)}{n}} \sum_{i=1}^{n \frac{\tilde{n}_{1}(s)}{n}}\left(\omega_{i}^{s}-\omega(s)\right)^{2}-\mathbb{E}\left[\left(\omega_{i}^{s}-\omega(s)\right)^{2}\right]\right|>\epsilon \right\rvert\, \frac{\tilde{n}_{1}(s)}{n}\right\} \xrightarrow{\text { a.s. }} 0
$$

Therefore, the first and third terms coincide with Ω_{1} and Ω_{3}. The second term converges to

$$
\operatorname{plim} \frac{1}{n} \sum_{i=1}^{n}\left(Z_{i}-p_{z}\right)^{2} \omega(s)^{2}=\sum_{s=1}^{S} \omega(s)^{2} p(s) p_{z}\left(1-p_{z}\right)
$$

This is larger than Ω_{2} as long as $\tau(s) \leq p_{z}\left(1-p_{z}\right)$ for all $s \in \mathcal{S}$, and strictly so for some $s \in \mathcal{S}$.

I Proof of Proposition 5

The sample normal equations for this regression are given by

$$
\tau_{n}\left(\hat{\beta}_{2}, \hat{\eta}\right)=\frac{1}{n} \sum_{i=1}^{n}\left[\begin{array}{c}
1\left(X_{i} \in S\right)_{s \in \mathcal{S}} \\
\left(Z_{i}-p_{z}\right)
\end{array}\right]\left(Y_{i}-\hat{\beta}_{2} D_{i}-\sum_{s=1}^{S} \hat{\eta}_{s} 1\left(X_{i} \in s\right)\right)=0 .
$$

We can write $\left(\hat{\beta}_{2}-\beta_{0}, \hat{\eta}-\eta_{0}\right)=\hat{A}^{-1} \tau_{n}\left(\beta_{0}, \eta_{0}\right)$ if we let $\eta_{0}=\left(\eta_{0 s}, s \in \mathcal{S}\right)$, $t_{1}(s)=$ $E\left(t_{1 i} \mid X_{i} \in s\right), t_{0}(s)=E\left(t_{0 i} \mid X_{i} \in s\right)$,

$$
\begin{aligned}
\eta_{0 s}= & E(Y \mid s)-E(D \mid s) \beta_{0}=p_{z} t_{1}(s)+\left(1-p_{z}\right) t_{0}(s) \\
& =\left(1-p_{z}\right) t_{1}(s)+p_{z} t_{0}(s)-\left(1-2 p_{z}\right)\left[t_{1}(s)-t_{0}(s)\right]
\end{aligned}
$$

and

$$
\hat{A}=\frac{1}{n} \sum_{i=1}^{n}\left[\begin{array}{cc}
1\left(X_{i} \in s\right)_{s \in \mathcal{S}} D_{i} & \operatorname{diag}\left(1\left(X_{i} \in s\right)_{s \in \mathcal{S}}\right) \\
\left(Z_{i}-p_{z}\right) D_{i} & \left(Z_{i}-p_{z}\right) 1\left(X_{i} \in S\right)_{s \in \mathcal{S}}^{\prime} .
\end{array}\right]
$$

Using Assumption 8.1 and 8.2 we can show that $\hat{A}=A+o_{P}(1)$, where

$$
A=\left[\begin{array}{cc}
p(s) E(D \mid s) & \operatorname{diag}(p(s), s \in \mathcal{S}) \\
p_{z}\left(1-p_{z}\right) P\left(D_{1}>D_{0}\right) & 0
\end{array}\right]
$$

In the following we will show that $\tau_{n}\left(\beta_{0}, \eta_{0}\right)=O_{p}\left(\frac{1}{\sqrt{n}}\right)$, which by non-singularity of A implies that $\left(\hat{\beta}_{2}-\beta_{0}, \hat{\eta}-\eta_{0}\right)=O_{P}\left(\frac{1}{\sqrt{n}}\right)$. Then the second row of the relation

$$
\left(A+o_{P}(1)\right)\left(\hat{\beta}_{2}-\beta_{0}, \hat{\eta}-\eta_{0}\right)^{\prime}=\tau_{n}\left(\beta_{0}, \eta_{0}\right)
$$

implies that, using the above $\eta_{0 s}$,
$P\left(D_{1}>D_{0}\right) \sqrt{n}\left(\hat{\beta}_{2}-\beta_{0}\right)=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \frac{\left(Z_{i}-p_{z}\right)}{p_{z}\left(1-p_{z}\right)}\left(Y_{i}-\beta_{0} D_{i}-\sum_{s=1}^{S} \eta_{0 s} 1\left(X_{i} \in s\right)\right)+o_{P}(1)$

$$
\begin{aligned}
& =\frac{1}{\sqrt{n}} \sum_{i=1}^{n}\left[(Z _ { i } - p _ { z }) \left(\frac{t_{1 i}-E t_{1 i}}{p_{z}}+\frac{t_{0 i}-E t_{0 i}}{1-p_{z}}\right.\right. \\
& -\sum_{s \in \mathcal{S}}\left(\frac{E\left(t_{1 i}-E t_{1 i} \mid X_{i} \in s\right)}{p_{z}}+\frac{E\left(t_{0 i}-E t_{0 i} \mid X_{i} \in s\right)}{1-p_{z}}\right. \\
& \left.\left.\left.\quad-\frac{1-2 p_{z}}{p_{z}\left(1-p_{z}\right)}\left[t_{1}(s)-t_{0}(s)\right]\right) 1\left(X_{i} \in s\right)\right)+\left(t_{1 i}-t_{0 i}\right)\right]+o_{P}(1) \\
& =\sum_{s \in \mathcal{S}} \frac{1}{\sqrt{n}} \sum_{i=1}^{n} 1\left(X_{i} \in s\right)\left(Z_{i}-p_{z}\right)\left(\omega_{i}-\omega(s)\right)+\sum_{s \in \mathcal{S}} \frac{1}{\sqrt{n}} \sum_{i=1}^{n} 1\left(X_{i} \in s\right) \\
& \quad\left(Z_{i}-p_{z}\right) \frac{1-2 p_{z}}{p_{z}\left(1-p_{z}\right)}\left(t_{1}(s)-t_{0}(s)\right)+\frac{1}{\sqrt{n}} \sum_{i=1}^{n}\left(t_{1 i}-t_{0 i}\right)+o_{P}(1) .
\end{aligned}
$$

where we recall that $\omega_{i}=\frac{t_{1 i}-E t_{1 i}}{p_{z}}+\frac{t_{0 i}-E t_{0 i}}{1-p_{z}}$ and $\omega(s)=E\left[\omega_{i} \mid X_{i} \in s\right]$. Using similar arguments to those in proposition 4,

$$
\begin{aligned}
& \sum_{s \in \mathcal{S}} \frac{1}{\sqrt{n}} \sum_{i=1}^{n} 1\left(X_{i} \in s\right)\left(Z_{i}-p_{z}\right)\left(\omega_{i}-\omega(s)\right) \\
& \quad \xrightarrow[\rightarrow]{d} N(\underbrace{0, p_{z}\left(1-p_{z}\right) \sum_{s \in \mathcal{S}} p(s) \mathbb{E}\left[\left(\omega_{i}-\omega(s)\right)^{2} \mid X_{i} \in s\right]}_{\Omega_{1}}) \\
& \sum_{s \in \mathcal{S}} \frac{1}{\sqrt{n}} \sum_{i=1}^{n} 1\left(X_{i} \in s\right)\left(Z_{i}-p_{z}\right) \frac{1-2 p_{z}}{p_{z}\left(1-p_{z}\right)}\left(t_{1}(s)-t_{0}(s)\right) \\
& \quad \stackrel{d}{\rightarrow} N(0, \underbrace{\sum_{s \in \mathcal{S}} p(s) \tau(s)\left(\frac{1-2 p_{z}}{p_{z}\left(1-p_{z}\right)}\left(t_{1}(s)-t_{0}(s)\right)\right)^{2}}_{\Omega_{2}}) \\
& \frac{1}{\sqrt{n}} \sum_{i=1}^{n}\left(t_{1 i}-t_{0 i}\right) \xrightarrow{d} N(0, \underbrace{\operatorname{Var}\left[t_{1 i}-t_{0 i}\right]}_{\Omega_{3}})
\end{aligned}
$$

Note that the first two sums in the influence function are orthogonal:

$$
\operatorname{Cov}\left[\sum_{s \in \mathcal{S}} \frac{1}{\sqrt{n}} \sum_{i=1}^{n} 1\left(X_{i} \in s\right)\left(Z_{i}-p_{z}\right)\left(\omega_{i}-\omega(s)\right), \sum_{s \in \mathcal{S}} \frac{1}{\sqrt{n}} \sum_{i=1}^{n} 1\left(X_{i} \in s\right)\right.
$$

$$
\begin{aligned}
& \left.\left(Z_{i}-p_{z}\right) \frac{1-2 p_{z}}{p_{z}\left(1-p_{z}\right)}\left(t_{1}(s)-t_{0}(s)\right)\right] \\
= & \sum_{s \in \mathcal{S}} \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \mathbb{E}\left[1\left(X_{i} \in s\right)\left(Z_{i}-p_{z}\right)^{2}\left(\omega_{i}-\omega(s)\right) \frac{1-2 p_{z}}{p_{z}\left(1-p_{z}\right)}\left(t_{1}(s)-t_{0}(s)\right)\right] \\
= & \sum_{s \in \mathcal{S}} \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \mathbb{E}\left[1\left(X_{i} \in s\right)\left(Z_{i}-p_{z}\right)^{2} \frac{1-2 p_{z}}{p_{z}\left(1-p_{z}\right)}\left(\mathbb{E}\left[\left(\omega_{i}-\omega(s)\right)\left(t_{1}(s)-t_{0}(s)\right) \mid X_{i} \in s, Z_{i}\right]\right)\right] \\
= & \sum_{s \in \mathcal{S}} \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \mathbb{E}\left[1\left(X_{i} \in s\right)\left(Z_{i}-p_{z}\right)^{2}\left(\omega_{i}-\mathbb{E}\left[\omega_{i} \mid X_{i} \in S\right]\right) \frac{1-2 p_{z}}{p_{z}\left(1-p_{z}\right)}\left(t_{1}(s)-t_{0}(s)\right)\right]=0
\end{aligned}
$$

And the third sum is orthogonal to the first two sums by the same arguments in proposition 4. Therefore, $P\left(D_{1}>D_{0}\right) \sqrt{n}\left(\hat{\beta}_{2}-\beta_{0}\right) \xrightarrow{d} N\left(0, \Omega_{1}+\bar{\Omega}_{2}+\Omega_{3}\right)$. It is also easy to show using similar arguments to those in proposition 4 that the 2SLS nominal variance consistently estimates $P\left(D_{1}>D_{0}\right)^{-2}$ times

$$
\begin{aligned}
& \operatorname{plim} \frac{1}{n} \sum_{i=1}^{n}\left[\frac{\left(Z_{i}-p_{z}\right)}{p_{z}\left(1-p_{z}\right)}\left(Y_{i}-\beta_{0} D_{i}-\sum_{s=1}^{S} \eta_{0 s} 1\left(X_{i} \in s\right)\right)\right]^{2} \\
& =\operatorname{plim} \sum_{s \in \mathcal{S}} \frac{1}{n} \sum_{i=1}^{n} 1\left(X_{i} \in s\right)\left(Z_{i}-p_{z}\right)\left(\omega_{i}-\omega(s)\right)^{2} \\
& +\operatorname{plim} \sum_{s \in \mathcal{S}} \frac{1}{n} \sum_{i=1}^{n} 1\left(X_{i} \in s\right)\left(Z_{i}-p_{z}\right)\left(\frac{1-2 p_{z}}{p_{z}\left(1-p_{z}\right)}\right)^{2}\left(t_{1}(s)-t_{0}(s)\right)^{2} \\
& +\operatorname{plim} \frac{1}{n} \sum_{i=1}^{n}\left(t_{1 i}-t_{0 i}\right)^{2} \\
& =\Omega_{1}+\tilde{\Omega}_{2}+\Omega_{3}
\end{aligned}
$$

where

$$
\tilde{\Omega}_{2}=\sum_{s \in \mathcal{S}} p(s) p_{z}\left(1-p_{z}\right)\left(\frac{1-2 p_{z}}{p_{z}\left(1-p_{z}\right)}\left(t_{1}(s)-t_{0}(s)\right)\right)^{2}
$$

which is larger than $\bar{\Omega}_{2}$ if $p_{z}\left(1-p_{z}\right)>\tau(s)$ for some s, unless $S=1$ or $p_{z}=\frac{1}{2}$.

J Proof of Proposition 6

We choose to work with the representation in eq. (11), using which we write

$$
\begin{equation*}
\sqrt{n}\left(\hat{\beta}_{3}-\beta_{0}\right)=\sqrt{n} \frac{\sum_{s=1}^{S}\left(\hat{\zeta}_{1 s}-\hat{\zeta}_{0 s}-\beta_{0}\left(\hat{\zeta}_{1 s}-\hat{\zeta}_{0 s}\right)\right) \frac{\sum_{i=1}^{n} 1\left(X_{i} \in s\right)}{n}}{\sum_{s=1}^{S}\left(\hat{\zeta}_{1 s}-\hat{\zeta}_{0 s}\right) \frac{\sum_{i=1}^{n} 1\left(X_{i} \in s\right)}{n}} \tag{26}
\end{equation*}
$$

For the denominator, under Assumption 8, Lemma B. 3 of BCS 2017a implies that

$$
\begin{aligned}
& \hat{\zeta}_{1 s}=\frac{\frac{1}{n} \sum_{i=1}^{n} 1\left(X_{i} \in S\right) Z_{i} D_{i}}{\frac{1}{n} \sum_{i=1}^{n} 1\left(X_{i} \in s\right) Z_{i}} \xrightarrow{p} P\left(D_{1}=1 \mid s\right), \\
& \hat{\zeta}_{0 s}=\frac{\frac{1}{n} \sum_{i=1}^{n} 1\left(X_{i} \in s\right)\left(1-Z_{i}\right) D_{i}}{\frac{1}{n} \sum_{i=1}^{n} 1\left(X_{i} \in s\right)\left(1-Z_{i}\right)} \xrightarrow{p} P\left(D_{0}=1 \mid s\right) .
\end{aligned}
$$

Together with $\frac{1}{n} \sum_{i=1}^{n} 1\left(x_{i} \in s\right) \xrightarrow{p} p(s) \equiv p\left(x_{i} \in s\right)$,

$$
\sum_{s=1}^{S}\left(\hat{\zeta}_{1 s}-\hat{\zeta}_{0 s}\right) \frac{\sum_{i=1}^{n} 1\left(X_{i} \in S\right)}{n} \xrightarrow{p} P\left(D_{1}=1\right)-P\left(D_{0}=1\right)=P\left(D_{1}>D_{0}\right) .
$$

Using $\hat{p}(s)=\frac{1}{n} \sum_{i=1}^{n} 1\left(X_{i} \in S\right), \hat{p}(s) \hat{p}_{z}(s)=\frac{1}{n} \sum_{=1}^{n} 1\left(X_{i} \in s\right) Z_{i}, t_{1}(s)=E\left[t_{1 i} \mid X_{i} \in s\right]$, and $t_{0}(s)=E\left[t_{0 i} \mid X_{i} \in s\right]$

$$
\begin{aligned}
& \sum_{s=1}^{S}\left(\hat{\zeta}_{1 s}-\hat{\zeta}_{0 s}-\beta_{0}\left(\hat{\zeta}_{1 s}-\hat{\zeta}_{0 s}\right)\right) \frac{\sum_{i=1}^{n} 1\left(X_{i} \in S\right)}{n} \\
= & \sum_{s=1}^{S} \hat{p}(s)\left[\frac{\frac{1}{n} \sum_{i=1}^{n} t_{1 i} 1\left(X_{i} \in s\right) Z_{i}}{\hat{p}(s) \hat{p}_{z}}-\frac{\frac{1}{n} \sum_{i=1}^{n} t_{0 i} 1\left(X_{i} \in s\right)\left(1-Z_{i}\right)}{\hat{p}(s)\left(1-\hat{p}_{z}\right)}\right] \\
= & \sum_{s=1}^{S} \frac{1}{n} \sum_{i=1}^{n} 1\left(X_{i} \in s\right)\left[\frac{\left(t_{1 i}-t_{1}(s)\right) Z_{i}}{\hat{p}_{z}}-\frac{\left(t_{0 i}-t_{0}(s)\right)\left(1-Z_{i}\right)}{\left(1-\hat{p}_{z}\right)}\right] \\
& +\sum_{s=1}^{S} \frac{1}{n} \sum_{i=1}^{n} 1\left(X_{i} \in S\right)\left(t_{1}(s)-t_{0}(s)\right) \\
= & \sum_{s=1}^{S} \frac{1}{n} \sum_{i=1}^{n} 1\left(X_{i} \in S\right)\left[\frac{\left(t_{1 i}-t_{1}(s)\right) Z_{i}}{p_{z}}-\frac{\left(t_{0 i}-t_{0}(s)\right)\left(1-Z_{i}\right)}{\left(1-p_{z}\right)}\right]+\sum_{s \in \mathcal{S}}\left(R_{1 n s}+R_{2 n s}\right) \\
& +\sum_{s=1}^{S} \frac{1}{n} \sum_{i=1}^{n} 1\left(X_{i} \in s\right)\left(t_{1}(s)-t_{0}(s)\right)
\end{aligned}
$$

$$
\begin{align*}
= & \sum_{s=1}^{S} \frac{1}{n} \sum_{i=1}^{n} 1\left(X_{i} \in s\right)\left(Z_{i}-p_{z}\right)\left[\frac{t_{1 i}-t_{1}(s)}{p_{z}}+\frac{t_{0 i}-t_{0}(s)}{1-p_{z}}\right]+\sum_{s \in \mathcal{S}}\left(R_{1 n s}+R_{2 n s}\right) \\
& +\frac{1}{n} \sum_{i=1}^{n}\left(t_{1 i}-t_{0 i}\right) \tag{27}
\end{align*}
$$

In the above

$$
\begin{aligned}
& R_{1 n s}=\frac{p_{z}-\hat{p}_{z}}{\hat{p}_{z}\left(1-\hat{p}_{z}\right)} \frac{1}{n} \sum_{i=1}^{n} 1\left(X_{i} \in s\right)\left[\left(t_{1 i}-t_{1}(s)\right) Z_{i}+\left(t_{0 i}-t_{0}(s)\right)\left(1-Z_{i}\right)\right) \\
& R_{2 n s}=\left(\frac{1}{\hat{p}_{z}\left(1-\hat{p}_{z}\right)}-\frac{1}{p_{z}\left(1-p_{z}\right)}\right) \times \\
& \quad \frac{1}{n} \sum_{i=1}^{n} 1\left(X_{i} \in s\right)\left[\left(1-p_{z}\right)\left(t_{1 i}-t_{1}(s)\right) Z_{i}-p_{z}\left(t_{0 i}-t_{0}(s)\right)\left(1-Z_{i}\right)\right] .
\end{aligned}
$$

Rewriting,

$$
\begin{aligned}
R_{1 n s}= & \frac{p_{z}-\hat{p}_{z}}{\hat{p}_{z}\left(1-\hat{p}_{z}\right)}\left\{\frac{1}{n} \sum_{i=1}^{n} 1\left(X_{i} \in s\right)\left(Z_{i}-p_{z}\right)\left[\left(t_{1 i}-t_{1}(s)\right)-\left(t_{0 i}-t_{0}(s)\right)\right]\right. \\
& \left.+p_{z} \frac{1}{n} \sum_{i=1}^{n} 1\left(X_{i} \in s\right)\left(t_{1 i}-t_{1}(s)\right)+\left(1-p_{z}\right) \frac{1}{n} \sum_{i=1}^{n} 1\left(X_{i} \in s\right)\left(t_{0 i}-t_{0}(s)\right)\right\} \\
R_{2 n s}= & \left(\frac{1}{\hat{p}_{z}\left(1-\hat{p}_{z}\right)}-\frac{1}{p_{z}\left(1-p_{z}\right)}\right)\left\{\frac{1}{n} \sum_{i=1}^{n} 1\left(X_{i} \in s\right)\left(Z_{i}-p_{z}\right)\left[\left(t_{1 i}-t_{1}(s)\right)+\left(t_{0 i}-t_{0}(s)\right)\right]\right. \\
& \left.+p_{z} \frac{1}{n} \sum_{i=1}^{n}\left(1-Z_{i}\right) 1\left(X_{i} \in s\right)\left(t_{1 i}-t_{1}(s)\right)-\left(1-p_{z}\right) \frac{1}{n} \sum_{i=1}^{n} Z_{i} 1\left(X_{i} \in s\right)\left(t_{0 i}-t_{0}(s)\right)\right\} \\
= & \left(\frac{1}{\hat{p}_{z}\left(1-\hat{p}_{z}\right)}-\frac{1}{p_{z}\left(1-p_{z}\right)}\right)\left\{\frac{1}{n} \sum_{i=1}^{n} 1\left(X_{i} \in s\right)\left(Z_{i}-p_{z}\right)\left[\left(t_{1 i}-t_{1}(s)\right)+\left(t_{0 i}-t_{0}(s)\right)\right]\right. \\
& +p_{z} \frac{1}{n} \sum_{i=1}^{n}\left(1-Z_{i}-\left(1-p_{z}\right)\right) 1\left(X_{i} \in s\right)\left(t_{1 i}-t_{1}(s)\right) \\
& \quad-\left(1-p_{z}\right) \frac{1}{n} \sum_{i=1}^{n}\left(Z_{i}-p_{z}\right) 1\left(X_{i} \in s\right)\left(t_{0 i}-t_{0}(s)\right) \\
& \left.+p_{z}\left(1-p_{z}\right) \frac{1}{n} \sum_{i=1}^{n} 1\left(X_{i} \in s\right)\left(t_{1 i}-t_{1}(s)\right)-\left(1-p_{z}\right) p_{z} \frac{1}{n} \sum_{i=1}^{n} 1\left(X_{i} \in s\right)\left(t_{0 i}-t_{0}(s)\right)\right\}
\end{aligned}
$$

Using Assumption 8, Lemmas B. 2 and B. 3 of BCS 2017a, and arguments similar to those in propositions 4 and 5, we can show that $\sum_{s \in \mathcal{S}} R_{1 n s}=o_{P}(1) O_{P}\left(\frac{1}{\sqrt{n}}\right)=$ $o_{P}\left(\frac{1}{\sqrt{n}}\right)$ and $\sum_{s \in \mathcal{S}} R_{2 n s}=o_{P}(1) O_{P}\left(\frac{1}{\sqrt{n}}\right)=o_{P}\left(\frac{1}{\sqrt{n}}\right)$.

Since $\frac{t_{1 i}-t_{1}(s)}{p_{z}}+\frac{t_{0 i}-t_{0}(s)}{1-p_{z}}=\frac{t_{1 i}-E t_{1 i}}{p_{z}}+\frac{t_{0 i}-E t_{0 i}}{1-p_{z}}-\left(\frac{t_{1}(s)-E t_{1 i}}{p_{z}}+\frac{t_{0}(s)-E t_{0 i}}{1-p_{z}}\right)=\omega_{i}-\omega(s)$ eq. (27) can be written as

$$
\begin{equation*}
\sum_{s=1}^{S} \frac{1}{\sqrt{n}} \sum_{i=1}^{n} 1\left(X_{i} \in s\right)\left(Z_{i}-p_{z}\right)\left[\omega_{i}-\omega(s)\right]+\frac{1}{\sqrt{n}} \sum_{i=1}^{n}\left(t_{1 i}-t_{0 i}\right)+o_{P}(1) \tag{28}
\end{equation*}
$$

The first part of this influence function corresponds exactly to the first term in eq. (25). Therefore regardless of p_{z} there is no need to worry about the variation induced by the sampling scheme for Z_{i} within the cluster.

In the special case of unconfoundedness, eq. (28) becomes

$$
\begin{gather*}
\sum_{s=1}^{S} \frac{1}{\sqrt{n}} \sum_{i=1}^{n} 1\left(X_{i} \in S\right)\left(Z_{i}-p_{z}\right)\left[\frac{Y_{1 i}}{p_{z}}+\frac{Y_{0 i}}{1-p_{z}}-E\left[\left.\frac{Y_{1 i}}{p_{z}}+\frac{Y_{0 i}}{1-p_{z}} \right\rvert\, X_{i} \in S\right]\right] \tag{29}\\
+\frac{1}{\sqrt{n}} \sum_{i=1}^{n}\left(Y_{1 i}-Y_{0 i}\right)-\left(\mu_{1}-\mu_{0}\right)+o_{P}(1)
\end{gather*}
$$

Using Assumption 8, $\hat{\sigma}_{3}^{2}$ is consistent for the plim of $P\left(D_{1}>D_{0}\right)^{-2}$ times $\frac{1}{n} \sum_{i=1}^{n} \psi_{i}^{2}$ where

$$
\begin{aligned}
\psi_{i}= & \left(Z_{i}-p_{z}\right)\left(\left(\frac{t_{1 i}-\bar{t}_{1}}{p_{z}}+\frac{t_{0 i}-\bar{t}_{0}}{1-p_{z}}-\Sigma_{n, X, \frac{t_{1}}{p z}+\frac{t_{0}}{1-p_{z}}} \Sigma_{n, X}^{-1}\left(X_{i}-\bar{X}\right)\right)\right) \\
& +p_{z}\left(1-p_{z}\right)\left(t_{1 i}-t_{0 i}-\bar{t}_{1}+\bar{t}_{0}-\Sigma_{n, X, t_{1}-t_{0}} \Sigma_{n, X}^{-1}\left(X_{i}-\bar{X}\right)\right) \\
= & \left(Z_{i}-p_{z}\right)\left(\left(\omega_{i}-\bar{\omega}-\Sigma_{n, X, \omega} \Sigma_{n, X}^{-1}\left(X_{i}-\bar{X}\right)\right)\right) \\
& +p_{z}\left(1-p_{z}\right)\left(t_{1 i}-t_{0 i}-\bar{t}_{1}+\bar{t}_{0}-\Sigma_{n, X, t_{1}-t_{0}} \Sigma_{n, X}^{-1}\left(X_{i}-\bar{X}\right)\right)
\end{aligned}
$$

for $\Sigma_{n, X}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(X_{i}-\bar{X}\right)^{\prime}$ and $\Sigma_{n, X, t}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(t_{i}-\bar{t}\right)$. With X_{i} being the cluster dummies, $\omega_{i}-\bar{\omega}-\Sigma_{n, X, \omega} \Sigma_{n, X}^{-1}\left(X_{i}-\bar{X}\right)$ is the residual from a saturated regression of ω_{i} on the cluster dummies, and converges to $\sum_{s \in \mathcal{S}} 1\left(x_{i} \in s\right)\left(\omega_{i}-\omega(s)\right)$. For the same reason, $t_{1 i}-t_{0 i}-\bar{t}_{1}+\bar{t}_{0}-\Sigma_{n, X, t_{1}-t_{0}} \Sigma_{n, X}^{-1}\left(X_{i}-\bar{X}\right)$ is the residual from a saturated regression of $t_{1 i}-t_{0 i}$ on the cluster dummies, and converges to

$$
\sum_{s \in \mathcal{S}} 1\left(x_{i} \in s\right)\left(t_{1 i}-t_{0 i}-E\left(t_{1 i}-t_{0 i} \mid s\right)\right) .
$$

Therefore $\frac{1}{n} \sum_{i=1}^{n} \psi_{i}^{2}$ is in turn consistent for the variance of

$$
\begin{aligned}
& \sum_{s=1}^{S} \frac{1}{\sqrt{n}} \sum_{i=1}^{n} 1\left(X_{i} \in s\right)\left(Z_{i}-p_{z}\right)\left[\omega_{i}-\omega(s)\right]+\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \sum_{s \in \mathcal{S}} 1\left(x_{i} \in s\right) \\
& \quad\left(t_{1 i}-t_{0 i}-E\left(t_{1 i}-t_{0 i} \mid s\right)\right),
\end{aligned}
$$

which is asymptotically smaller than the variance of eq. (28) but larger than the variance of its first component. Next we will need to add a consistent estimate of

$$
\frac{1}{n} \sum_{i=1}^{n} \sum_{s \in \mathcal{S}} 1\left(x_{i} \in s\right) E\left(t_{1 i}-t_{0 i} \mid s\right)^{2}
$$

This is obtained by $\hat{\phi}^{\prime} \frac{1}{n} \sum_{i=1}^{n}\left(V_{i}-\bar{V}\right)\left(V_{i}-\bar{V}\right)^{\prime} \hat{\phi}$, which is the variance of the fitted value of the saturated cluster dummy regression. We can then use $\bar{\sigma}_{3}^{2}$ in Corollary 3 to obtain a consistent estimate of the variance of eq. (28).

We can also directly estimate the variance of $\hat{\beta}_{3}$ by estimating the first representation of the influence function in eq. (27). Let $\hat{t}_{1 i} Z_{i}=\left(Y_{i}-D_{i} \hat{\beta}_{3}\right) Z_{i}, \hat{t}_{0 i}\left(1-Z_{i}\right)=$ $\left(Y_{i}-D_{i} \hat{\beta}_{3}\right)\left(1-Z_{i}\right)$,

$$
\begin{aligned}
& \hat{t}_{1}(s)=\sum_{i=1}^{n} \hat{t}_{1 i} Z_{i} 1\left(X_{i} \in s\right) / \sum_{i=1}^{n} Z_{i} 1\left(X_{i} \in s\right) \\
& \hat{t}_{0}(s)=\sum_{i=1}^{n} \hat{t}_{0 i}\left(1-Z_{i}\right) 1\left(X_{i} \in s\right) / \sum_{i=1}^{n}\left(1-Z_{i}\right) 1\left(X_{i} \in s\right)
\end{aligned}
$$

and construct

$$
\begin{aligned}
\hat{\Omega}= & \frac{1}{n} \sum_{i=1}^{n}\left(\sum_{s \in \mathcal{S}} 1\left(X_{i} \in s\right)\left[\frac{\left(\hat{t}_{1 i} Z_{i}-\hat{t}_{1}(s) Z_{i}\right)}{\hat{p}_{z}}-\frac{\left(\hat{t}_{0 i}\left(1-Z_{i}\right)-\hat{t}_{0}(s)\left(1-Z_{i}\right)\right)}{\left(1-\hat{p}_{z}\right)}\right]\right)^{2} \\
& +\frac{1}{n} \sum_{i=1}^{n}\left[\sum_{s=1}^{s} 1\left(X_{i} \in s\right)\left(\hat{t}_{1}(s)-\hat{t}_{0}(s)\right)\right]^{2}
\end{aligned}
$$

Lemma B. 3 of BCS 2017a and the continuous mapping theorem imply that $\hat{t}_{1}(s) \xrightarrow{p} t_{1}(s)$ and $\hat{t}_{0}(s) \xrightarrow{p} t_{0}(s)$. Slutsky's theorem then implies that $\hat{\Omega}$ consistently estimates the variance of eq. (27).

K Proof of Proposition 7

This estimator can be implemented using OLS and 2SLS by fully interacting Z_{i}, the cluster dummies, and the additional regressors X_{i}. To simplify notation we denote $W_{i}=\left(1 X_{i}\right)$ and the regression functions in eq. (12) as $\hat{\gamma}_{0 s}^{\prime} W_{i}, \hat{\gamma}_{1 s}^{\prime} W_{i}, \hat{\tau}_{0 s}^{\prime} W_{i}$ and $\hat{\tau}_{1 s}^{\prime} W_{i}$. Consider first the OLS case under Assumption 5.

$$
\hat{\beta}_{S}=\sum_{s \in \mathcal{S}} \hat{p}(s) \bar{W}_{s}\left(\hat{\gamma}_{1 s}-\hat{\gamma}_{0 s}\right)
$$

where $\bar{W}_{s}=\frac{1}{n} \sum_{i=1}^{n} 1\left(X_{i} \in s\right) W_{i} / \hat{p}(s), \hat{\gamma}_{0 s} \xrightarrow{p} \gamma_{0 s}=\left(E\left(W W^{\prime} \mid s\right)\right)^{-1}\left(E\left(W Y_{0} \mid s\right)\right)$, and $\hat{\gamma}_{1 s} \xrightarrow{p} \gamma_{1 s}=\left(E\left(W W^{\prime} \mid s\right)\right)^{-1}\left(E\left(W Y_{1} \mid s\right)\right)$, for

$$
\begin{equation*}
\hat{\gamma}_{1 s}=H_{1 n}^{-1}\left(\frac{1}{n} \sum_{i=1}^{n} 1\left(X_{i} \in s\right) Z_{i} W_{i} Y_{i}\right) \quad \text { and } \quad H_{1 n}=\left(\frac{1}{n} \sum_{i=1}^{n} 1\left(X_{i} \in s\right) Z_{i} W_{i} W_{i}^{\prime}\right) . \tag{30}
\end{equation*}
$$

$\hat{\gamma}_{0 s}=H_{0 n}^{-1}\left(\frac{1}{n} \sum_{i=1}^{n} 1\left(X_{i} \in s\right)\left(1-Z_{i}\right) W_{i} Y_{i}\right) \quad$ and $\quad H_{0 n}=\left(\frac{1}{n} \sum_{i=1}^{n} 1\left(X_{i} \in s\right)\left(1-Z_{i}\right) W_{i} W_{i}^{\prime}\right)$.

In the normal equations $E W\left(Y_{j}-W^{\prime} \gamma_{j s} \mid s\right)=0$ for $j=0,1$, and W includes the constant term. Therefore $E\left(Y_{j}-W^{\prime} \gamma_{j S} \mid s\right)=0$ for $j=0,1$, so that $\hat{\beta}_{S} \xrightarrow{p} \beta_{0}=\Delta=$ $E\left(Y_{1}-Y_{0}\right)$. In the following, we will not require $p_{z}(s) \equiv p_{z}$. Note that

$$
\hat{\beta}_{S}-\beta_{0}=\underbrace{\sum_{s \in \mathcal{S}} \hat{p}(s) \bar{W}_{s}\left[\hat{\gamma}_{1 s}-\gamma_{1 s}-\hat{\gamma}_{0 s}+\gamma_{0 s}\right]}_{(1)}+\underbrace{\sum_{s \in \mathcal{S}} \hat{p}(s) \bar{W}_{s}\left(\gamma_{1 s}-\gamma_{0 s}\right)-\Delta}_{(2)}
$$

where we can write (1) as

$$
\begin{aligned}
& \sum_{s \in \mathcal{S}} \hat{p}(s) \bar{W}_{s}\left[H_{1 n}^{-1} \frac{1}{n} \sum_{i=1}^{n} 1\left(X_{i} \in s\right) W_{i} Z_{i}\left(Y_{1 i}-W_{i}^{\prime} \gamma_{1 s}\right)\right. \\
& \left.\quad-H_{0 n}^{-1} \frac{1}{n} \sum_{i=1}^{n} 1\left(X_{i} \in s\right) W_{i}\left(1-Z_{i}\right)\left(Y_{0 i}-W_{i}^{\prime} \gamma_{0 s}\right)\right]
\end{aligned}
$$

Using $\hat{p}(s) \xrightarrow{p} p(s), \bar{W}_{s} \xrightarrow{p} E(W \mid s), E\left(W^{\prime} \mid s\right) E\left(W W^{\prime} \mid s\right)^{-1}=(1,0, \ldots)$,

$$
H_{1 n} \xrightarrow{p} p(s) p_{z}(s) E\left(W W^{\prime} \mid s\right), \quad H_{0 n} \xrightarrow{p} p(s)\left(1-p_{z}(s)\right) E\left(W W^{\prime} \mid s\right),
$$

$$
\begin{aligned}
& \frac{1}{n} \sum_{i=1}^{n} 1\left(X_{i} \in s\right) W_{i} Z_{i}\left(Y_{1 i}-W_{i}^{\prime} \gamma_{1 s}\right)=O_{P}\left(\frac{1}{\sqrt{n}}\right) \\
& \frac{1}{n} \sum_{i=1}^{n} 1\left(X_{i} \in s\right) W_{i}\left(1-Z_{i}\right)\left(Y_{0 i}-W_{i}^{\prime} \gamma_{0 s}\right)=O_{P}\left(\frac{1}{\sqrt{n}}\right),
\end{aligned}
$$

we can write eq. (1) as

$$
\begin{aligned}
& \sum_{s \in \mathcal{S}} E(W \mid s) E\left(W W^{\prime} \mid s\right)^{-1} \frac{1}{n} \sum_{i=1}^{n} 1\left(X_{i} \in s\right) W_{i}\left(Z_{i} \frac{Y_{1 i}-W_{i}^{\prime} \gamma_{1 s}}{p_{z}(s)}-\left(1-Z_{i}\right) \frac{Y_{0 i}-W_{i}^{\prime} \gamma_{0 s}}{1-p_{z}(s)}\right) \\
& \quad+o_{P}\left(\frac{1}{\sqrt{n}}\right)=\sum_{s \in \mathcal{S}} \frac{1}{n} \sum_{i=1}^{n} 1\left(X_{i} \in s\right)\left[\left(Z_{i}-p_{z}(s)\right)\left(\frac{Y_{1 i}-W_{i}^{\prime} \gamma_{1 s}}{p_{z}(s)}+\frac{Y_{0 i}-W_{i}^{\prime} \gamma_{0 s}}{1-p_{z}(s)}\right)\right. \\
& \left.\quad+\left[Y_{1 i}-Y_{0 i}-W_{i}^{\prime}\left(\gamma_{1 s}-\gamma_{0 s}\right)\right]\right]+o_{P}\left(\frac{1}{\sqrt{n}}\right)
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
(1)+(2) & =\sum_{s \in \mathcal{S}} \frac{1}{n} \sum_{i=1}^{n} 1\left(X_{i} \in s\right)\left(Z_{i}-p_{z}(s)\right)\left(\frac{Y_{1 i}-W_{i}^{\prime} \gamma_{1 s}}{p_{z}(s)}+\frac{Y_{0 i}-W_{i}^{\prime} \gamma_{0 s}}{1-p_{z}(s)}\right) \\
& +\frac{1}{n} \sum_{i=1}^{n}\left(Y_{1 i}-Y_{0 i}-\Delta\right)+o_{P}\left(\frac{1}{\sqrt{n}}\right)
\end{aligned}
$$

This obviously is more efficient than eq. (29) since $W_{i}^{\prime} \gamma_{j s}, j=0,1$ is the linear projection of $Y_{i j}-E\left(Y_{i j} \mid s\right)$ within cluster s, and results in a smaller variance.

Next we generalize the above to LATE. Consider

$$
\hat{\beta}_{S}=\frac{\sum_{s \in \mathcal{S}} \hat{p}(s) \bar{W}_{s}\left(\hat{\gamma}_{1 s}-\hat{\gamma}_{0 s}\right)}{\sum_{s \in \mathcal{S}} \hat{p}(s) \bar{W}_{s}\left(\hat{\tau}_{1 s}-\hat{\tau}_{0 s}\right)}
$$

so that for $\beta_{0}=E\left(Y_{1}-Y_{0} \mid D_{1}>D_{0}\right)$,

$$
\hat{\beta}_{S}-\beta_{0}=\frac{\sum_{s \in \mathcal{S}} \hat{p}(s) \bar{W}_{s}\left(\hat{\gamma}_{1 s}-\hat{\gamma}_{0 s}-\left(\hat{\tau}_{1 s}-\hat{\tau}_{0 s}\right)^{\prime} \beta_{0}\right)}{\sum_{s \in \mathcal{S}} \hat{p}(s) \bar{W}_{s}\left(\hat{\tau}_{1 s}-\hat{\tau}_{0 s}\right)}
$$

Since the denominator is $E\left(D_{1}-D_{0}\right)+o_{P}(1)=P\left(D_{1}>D_{0}\right)+o_{P}(1)$, we focus on the numerator, and write

$$
\left(P\left(D_{1}>D_{0}\right)+o_{P}(1)\right)\left(\hat{\beta}_{S}-\beta_{0}\right)=\sum_{s \in \mathcal{S}} \hat{p}(s) \bar{W}_{s}\left(\hat{\gamma}_{1 s}-\hat{\gamma}_{0 s}-\left(\hat{\tau}_{1 s}-\hat{\tau}_{0 s}\right)^{\prime} \beta_{0}\right) .
$$

$\gamma_{1 s}$ and $\gamma_{0 s}$ are defined by

$$
\begin{gathered}
\hat{\gamma}_{1 s}=H_{1 n}^{-1}\left(\frac{1}{n} \sum_{i=1}^{n} 1\left(X_{i} \in s\right) Z_{i} W_{i} Y_{i}\right) \xrightarrow{p} \gamma_{1 s}=\left(E\left(W W^{\prime} \mid s\right)\right)^{-1}\left(E\left(W Y_{1}^{*} \mid s\right)\right) \\
\hat{\gamma}_{0 s}=H_{0 n}^{-1}\left(\frac{1}{n} \sum_{i=1}^{n} 1\left(X_{i} \in s\right)\left(1-Z_{i}\right) W_{i} Y_{i}\right) \xrightarrow{p} \gamma_{0 s}=\left(E\left(W W^{\prime} \mid s\right)\right)^{-1}\left(E\left(W Y_{0}^{*} \mid s\right)\right),
\end{gathered}
$$

and $\tau_{1 s}$ and $\tau_{0 s}$ are analogously defined by

$$
\begin{gathered}
\hat{\tau}_{1 s}=H_{1 n}^{-1}\left(\frac{1}{n} \sum_{i=1}^{n} 1\left(X_{i} \in s\right) Z_{i} W_{i} D_{i}\right) \xrightarrow{p} \tau_{1 s}=\left(E\left(W W^{\prime} \mid s\right)\right)^{-1}\left(E\left(W D_{1} \mid s\right)\right) \\
\hat{\tau}_{0 s}=H_{0 n}^{-1}\left(\frac{1}{n} \sum_{i=1}^{n} 1\left(X_{i} \in s\right)\left(1-Z_{i}\right) W_{i} D_{i}\right) \xrightarrow{p} \tau_{0 s}=\left(E\left(W W^{\prime} \mid s\right)\right)^{-1}\left(E\left(W D_{0} \mid s\right)\right) .
\end{gathered}
$$

Define $\hat{\eta}_{j s}=\hat{\gamma}_{j s}-\hat{\tau}_{j s}^{\prime} \beta_{0}$ for $j=0,1$, so that $\hat{\eta}_{j s} \xrightarrow{p} \eta_{j s}=E\left(W W^{\prime} \mid s\right)^{-1} E\left(W t_{j} \mid s\right)$, where

$$
\begin{aligned}
& \hat{\eta}_{1 s}=\left(\frac{1}{n} \sum_{i=1}^{n} 1\left(X_{i} \in S\right) Z_{i} W_{i} W_{i}^{\prime}\right)^{-1}(\frac{1}{n} \sum_{i=1}^{n} 1\left(X_{i} \in s\right) Z_{i} W_{i} \underbrace{\left(Y_{1 i}^{*}-D_{1 i}^{\prime} \beta_{0}\right)}_{t_{1 i}}) \\
& \hat{\eta}_{0 s}=\left(\frac{1}{n} \sum_{i=1}^{n} 1\left(X_{i} \in s\right)\left(1-Z_{i}\right) W_{i} W_{i}^{\prime}\right)^{-1}(\frac{1}{n} \sum_{i=1}^{n} 1\left(X_{i} \in s\right)\left(1-Z_{i}\right) W_{i} \underbrace{\left(Y_{0 i}^{*}-D_{0 i}^{\prime} \beta_{0}\right)}_{t_{0 i}})
\end{aligned}
$$

Then we proceed similar as the ATE case to write the numerator as

$$
\underbrace{\sum_{s \in \mathcal{S}} \hat{p}(s) \bar{W}_{s}\left[\hat{\eta}_{1 s}-\eta_{1 s}-\hat{\eta}_{0 s}+\eta_{0 s}\right]}_{(1)}+\underbrace{\sum_{s \in \mathcal{S}} \hat{p}(s) \bar{W}_{s}\left(\eta_{1 s}-\eta_{0 s}\right)}_{(2)},
$$

where by noting that

$$
\begin{aligned}
& \frac{1}{n} \sum_{i=1}^{n} 1\left(X_{i} \in s\right) W_{i} Z_{i}\left(t_{1 i}-W_{i}^{\prime} \eta_{1 s}\right)=O_{P}\left(\frac{1}{\sqrt{n}}\right) \\
& \frac{1}{n} \sum_{i=1}^{n} 1\left(X_{i} \in s\right) W_{i}\left(1-Z_{i}\right)\left(t_{0 i}-W_{i}^{\prime} \eta_{0 s}\right)=O_{P}\left(\frac{1}{\sqrt{n}}\right),
\end{aligned}
$$

we can write (1) as

$$
\begin{aligned}
& \sum_{s \in \mathcal{S}} E(W \mid s) E\left(W W^{\prime} \mid s\right)^{-1} \frac{1}{n} \sum_{i=1}^{n} 1\left(X_{i} \in s\right) W_{i}\left(Z_{i} \frac{t_{1 i}-W_{i}^{\prime} \eta_{1 s}}{p_{z}(s)}\right. \\
& \left.\quad-\left(1-Z_{i}\right) \frac{t_{0 i}-W_{i}^{\prime} \eta_{0 s}}{1-p_{z}(s)}\right)+o_{P}\left(\frac{1}{\sqrt{n}}\right) \\
& =\sum_{s \in \mathcal{S}} \frac{1}{n} \sum_{i=1}^{n} 1\left(X_{i} \in s\right)\left[\left(Z_{i}-p_{z}(s)\right)\left(\frac{t_{1 i}-W_{i}^{\prime} \eta_{1 s}}{p_{z}(s)}+\frac{t_{0 i}-W_{i}^{\prime} \eta_{0 s}}{1-p_{z}(s)}\right)\right. \\
& \left.\quad+\left[t_{1 i}-t_{0 i}-W_{i}^{\prime}\left(\eta_{1 s}-\eta_{0 s}\right)\right]\right]+o_{P}\left(\frac{1}{\sqrt{n}}\right)
\end{aligned}
$$

Therefore,

$$
\begin{align*}
(1)+(2)= & \sum_{s \in \mathcal{S}} \frac{1}{n} \sum_{i=1}^{n} 1\left(X_{i} \in s\right)\left(Z_{i}-p_{z}(s)\right)\left(\frac{t_{1 i}-W_{i}^{\prime} \eta_{1 s}}{p_{z}(s)}+\frac{t_{0 i}-W_{i}^{\prime} \eta_{0 s}}{1-p_{z}(s)}\right) \tag{32}\\
& +\frac{1}{n} \sum_{i=1}^{n}\left(t_{1 i}-t_{0 i}\right)+o_{P}\left(\frac{1}{\sqrt{n}}\right)
\end{align*}
$$

Again this ought to be more efficient than eq. (27) since $W_{i}^{\prime} \eta_{j s}$ is the within cluster linear projection of $t_{j i}-t_{j}(s)$. The more variables the projection is on, the smaller the variance. As $\operatorname{dim}(W) \rightarrow \infty$ at an appropriate rate, $W_{i}^{\prime} \eta_{j s} \rightarrow E\left(t_{j i} \mid W_{i}\right)$ for $j=0,1$, so that the above equation becomes the efficient influence function in eq. (24) conditional on both the cluster indicators and the extra regressors.

[^0]: *Corresponding author: Jessie Li, Department of Economics, University of California, Santa Cruz, California, E-mail: jeqli@ucsc.edu
 Jason Ansel, GoDaddy.com, LLC, Kirkland, Washington, E-mail: jasonansel@jasonansel.com Han Hong, Department of Economics, Stanford University, Stanford, California, E-mail: hanhong@stanford.edu

