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Abstract:We investigate estimation and inference of the (local) average treatment
effect parameter when a binary instrumental variable is generated by a random-
ized or conditionally randomized experiment. Under i.i.d. sampling, we show that
adding covariates and their interactions with the instrument will weakly improve
estimation precision of the (local) average treatment effect, but the robust OLS
(2SLS) standard errors will no longer be valid. We provide an analytic correc-
tion that is easy to implement and demonstrate through Monte Carlo simulations
and an empirical application the interacted estimator’s efficiency gains over the
unadjusted estimator and the uninteracted covariate adjusted estimator. We also
generalize our results to covariate adaptive randomization where the treatment
assignment is not i.i.d., thus extending the recent contributions of Bugni, F., I.A.
Canay, A.M. Shaikh (2017a), Inference Under Covariate-Adaptive Randomization.
Working Paper and Bugni, F., I.A. Canay, A.M. Shaikh (2017b), Inference Under
Covariate-Adaptive Randomization with Multiple Treatments. Working Paper to
allow for the case of non-compliance.

Keywords: big data, data science
JEL Classification: C1, C8, C9

1 Introduction

With the advent of the internet and large online datasets, randomized and con-
ditionally randomized experiments are becoming increasingly common. Despite
the vast literature on treatment effect analysis under conditional independence
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and monotonicity assumptions, the surge of recent interest in these experiments
(for example, Lin (2013); Freedman (2008); Bugni et al. (2017a); Bugni et al.
(2017b)) suggests a need to clarify the relationship to the previous literature and
for understanding new results that are relevant in these settings.

This paper contributes to the vast literature on treatment effect analysis
(Rosenbaum and Rubin (1983), Imbens and Angrist (1994), among others) by
examining the role that covariates play in improving the efficiency of treat-
ment effect estimates. Under the conventional assumption of independent and
identically-distributed (i.i.d.) sampling from an infinite population, we provide
an extensive analysis of the efficiency gains from including covariates interacted
with the binary instrument Z for the treatment. The efficiency analysis applies
under both full compliance and partial compliance. The full compliance case,
where the treatment indicatorD coincideswith the binary instrument of treatment
eligibility Z, is governed by amodel of conditional independence (unconfounded-
ness) in Rosenbaum and Rubin (1983). The partial compliance case, where Dmay
not be equal to Z, is governed by the local average treatment effect (LATE) model
of Imbens and Angrist (1994). Because the LATE model is more general, most of
the results in this paper are presented under the partial compliance LATE model.
Results for the full compliance model under unconfoundedness are special cases
of the LATE model when D = Z.

Under the i.i.d. sampling framework, we find that including additional cov-
ariates X and their interactions with Z in a 2SLS regression of the outcome Y
on the treatment indicator D will weakly improve efficiency of the estimator for
the LATE parameter. Including the covariates X only, without interacting with the
instrument Z, might improve or reduce efficiency. The intuition for the efficiency
gains from including the interaction term comes from examining its relationship
with the sieve estimator for ATE as discussed in Chen, Hong and Tarozzi (CHT
2008) and for LATE as discussed in Frolich (2006). If X were replaced with a sieve
expansion then the interacted estimator coincides with the sieve estimator.

We also extend our efficiency comparisons to covariate adaptive randomiza-
tion schemes. Following Bugni et al. (2017a) (BCS 2017a) and Bugni et al. (2017b)
(BCS 2017b), we admit strata-level differences in the randomization scheme, per-
form efficiency comparisons, and extend their results to allow for noncompliance.
In general, the interacted estimator is more efficient than the unadjusted and
uninteracted estimators, except when the sampling scheme exhibits strong bal-
ance, such as in stratified block randomization, in which case the interacted
estimator is equally efficient as the uninteracted covariate adjusted estimator.

In addition to providing Monte Carlo simulations comparing the standard
errors of the various estimators, we also include an empirical application. The
data come from GoDaddy, a domain name registrar responsible for managing
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sales of internet domain names through a variety of formats such as auctions and
direct negotiation between buyers and sellers. We observe a sample of auctions
which underwent a simple randomized experiment in which some auctions were
assigned a valuation determined by a machine learning algorithm for the domain
name that is being sold. The question is whether the act of seeing the valuation for
the domain name would induce bidders to submit higher bids and thereby raise
the sale price. We find that there is indeed a positive effect of seeing the valuation
on the sale price, and we show how the standard error of the average treatment
effect can decrease by including covariates interacted with the treatment.

In section 2, we present the model, the estimators, efficiency comparisons,
and consistent inference under the assumption of i.i.d. sampling. In section 3,
we discuss semiparametric efficiency and semiparametric estimation methods.
Section 4 generalizes our results to covariate adaptive randomization. We provide
Monte Carlo simulations in section 5 and the empirical application in section 6.
Section 7 concludes.

2 Theoretical model and parametric efficiency

Consider the causal LATE model of Imbens and Angrist (1994), and its special
case the conditional independence (CI) model of Rosenbaum and Rubin (1983).
The counterfactual outcomes are denoted Y1,Y0, and let Z ∈ {0, 1} be the dummy
instrumental variable indicating the eligibility for treatment. D1 and D0 are the
counterfactual treatment statuses corresponding to Z = 1 and Z = 0 respectively.
The sample contains Y,D, Z, and possibly additional covariates X, such that

D =D1Z + D0 (1 – Z)
Y =Y1D + Y0 (1 – D) = Y∗

1 Z + Y∗
0 (1 – Z)

where Y∗
1 = Y1D1 +Y0 (1 – D1) and Y∗

0 = Y1D0 +Y0 (1 – D0). We begin with the usual
i.i.d sampling with replacement framework:

Assumption 1 (i.i.d sampling). Y1i,Y0i,D1i,D0i,Xi, Zi are drawn i.i.d from an
underlying population.

Both the CI and LATE models are assumed to satisfy two assumptions. First,
the instrumental variable is independent of the potential outcomes, counterfac-
tual treatment statuses, and covariates. Second, the counterfactual treatment
status corresponding to Z = 1 is weakly greater than the counterfactual treatment
status corresponding to Z = 0 with probability 1 and strictly greater with positive
probability.
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Assumption 2 (CI.1, LATE.1, Independence). Y1,Y0,D1,D0,X ⊥ Z.

Assumption 3 (CI.2, LATE.2, Monotonicity). P (D1 ≥ D0) = 1, and P (D1 > D0) > 0.

The CI model additionally satisfies

Assumption 4 (CI.3, Full compliance). D1 = 1 and D0 = 0, or D = Z.

The CI Model often is stated without reference to Z since D = Z.

Assumption 5 (CI.1-3). Y1,Y0,X ⊥ D.

The population LATE parameter of interest is given by Imbens and Angrist
(1994):

"0 =E
(
Y1 – Y0|D1 > D0

)
= Cov(Y, Z)/Cov(D, Z) =

(
E
(
Y |Z = 1

)
– E

(
Y |Z = 0

))(
E
(
D|Z = 1

)
– E

(
D|Z = 0

)) (1)

which becomes the average treatment effect (ATE) parameter under CI:

"0 = E (Y1 – Y0) =
(
E
(
Y |Z = 1

)
– E

(
Y |Z = 0

))
.

Let "̂1 be the coefficient on D when running 2SLS of Y on D instrumented by Z:

"̂1 =
n∑
i=1

Yi
(
Zi – Z̄

)
/

n∑
i=1

Di
(
Zi – Z̄

)
This corresponds to the following Stata command:

ivreg Y (D=Z)

When Z = D, "̂1 becomes the coefficient on D in an OLS regression of Y on D:
reg Y D

In both the CI and the LATE models, it is well known that "̂1 is consistent for
"0 and the nominal (robust) OLS and 2SLS standard errors consistently estimate
the asymptotic variance for

√
n
(
"̂1 – "0

)
. Next, consider applying OLS or 2SLS to

regress Yi on Di and Xi, where D is instrumented by Z. Let "̂2 be the coefficient on
Di in

ivreg Y (D=Z) X or reg Y D X

It can be shown that "̂2 is consistent for "0 under both CI and LATE, but "̂2 can be
either more or less efficient than "̂1. The nominal (robust) OLS and 2SLS standard
errors remain valid for "̂2.

Finally, consider using OLS or 2SLS to regress Yi on Di and Xi, and the
interaction between Xi – X̄ and Zi. Let "̂3 be the coefficient on D in
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ivreg Y (D=Z) X Z*(X-X̄) or reg Y D X D*(X-X̄)

It can be shown that "̂3 is consistent for "0 under both CI and LATE, and "̂3 is
always no less efficient than "̂1 and "̂2.

Under i.i.d. sampling, the efficiency comparison holds under both the correl-
ation model and the causal model.

Assumption 6 (correlation model). Y and X have finite $ > 4moments, and X ⊥ Z.

Theorem 1. Under Assumptions 1 and 6, for j = 1, 2, 3,

√
n
(
"̂j – "0

) d
�→ N

(
0, 32j

)
, where 33 ≤ 3k for k = 1, 2.

Assumption 7 (causal model). Y1i, Y0i and Xi have finite 4 + $moments.

Corollary 1. Theorem 1 holds under Assumptions 1, 2, 3, and 7.

These results include the model in Lin (2013) as a special case when Zi = Di,
but differ in that we are concerned about superpopulation asymptotics while Lin
(2013) is not concerned about the variation in Xi. Adding covariates or functions
of covariates into the interaction estimator "̂3 will also further improve efficiency.
Let "̂4 be defined as "̂3 except that we replace X with a subset of it denoted Xs:

ivreg Y (D = Z) Xs Z*(Xs-X̄s) or reg Y D Xs D*(Xs-X̄s)

Corollary 2. Under the conditions of either Theorem 1 or Corollary 1,

√
n
(
"̂4 – "0

) d
�→ N

(
0, 324

)
, where34 ≥ 33.

For "̂1 and "̂2, nominal robust 2SLS standard errors (when D ≠ Z, and robust
OLS standard errors when Z = D) reported by Stata are asymptotically valid. In
contrast, robust 2SLS standard errors for "̂3 underestimate its asymptotic vari-
ance. In particular, nominal robust standard errors for "̂k, k = 1, 2, 3, denoted 3̂2k,
are given by the (2, 2) element of Â–1B̂Â–1, where
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Â =
1
n

n∑
i=1

W̄ikV̄ik B̂ =
1
n

n∑
i=1

:̂2ikW̄ikW̄ ′ik. (2)

In the above, W̄i1 = (1 Zi)′, V̄i1 = (1 Di), W̄i2 = (1 Zi Xi), V̄i2 = (1 Di Xi), W̄i3 =(
1 Zi Xi Zi

(
Xi – X̄

))
, V̄i3 =

(
1 Di Xi Zi

(
Xi – X̄

))
, and :̂ik is the regression residual

corresponding to "̂k. Furthermore, define

:̄i3 =
(
Zi – p̂z

)
:̂i3 + p̂z

(
1 – p̂z

)
6̂
(
Xi – X̄

)
. (3)

where 6̂ are the coefficients on Zi
(
Xi – X̄

)
and p̂z = Z̄. For ĈovZ,D = 1

n
∑n

i=1 ZiDi –
Z̄D̄,

3̄23 = Ĉov–2Z,D
1
n

n∑
i=1

:̄2i3 (4)

Corollary 3. Under the conditions of either Theorem 1 or Corollary 1, 3̂2k
p
�→ 32k for

k = 1, 2, and plim 3̂23 ≤ 323. But 3̄23
p
�→ 323.

It is possible to give a GMM interpretation to the interactive estimator "̂3. By
independence between Z andX, themoment conditions E6i (!0, "0, ,0x) = 0 hold,
where

6i (!, ", ,x) =
(

Zi
1 – Zi

)
⊗

(
yi – ! – "Di
Xi – ,x

)

Let V̂ar (6i (⋅)) = Var (6i (!0, "0, ,0x)) + oP(1) and 6̂ (!, ", ,x) = 1
n
∑n

i=1 6i (!, ", ,x).
It can then be shown that the GMM estimator, defined through(

!̂, "̂GMM, ,̂x
)
= arg min

!,",,x
6̂ (!, ", ,x)′ V̂ar (6i (!, ", ,x))–1 6̂ (!, ", ,x) (5)

coincides asymptotically with the interactive IV estimator "̂3.

Proposition 1. "̂GMM = "̂3 + oP
(

1√
n

)
.

3 Semiparametric estimation and efficiency

The asymptotic variance of the interactive estimator "̂3 decreases when more
regressors are added. If we replace Xi by its sieve expansion, denoted Vi = V (Xi),
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where dim (Vi) → ∞ as n → ∞ at a suitable rate, then our interactive estimator is
exactly the sieve ATE estimate in Chen, Hong and Tarozzi (CHT 2008) whenD = Z,
and is a sieve version of the average LATE estimator of Frolich (2006) when D ≠ Z.
We denote by "̂∞ our interactive estimator using Vi = V (Xi) in place of Xi.

We show this equivalence first for D = Z. The CHT 2008 ATE estimator uses
two linear regressions:

(1 – Di)Yi = (1 – Di)
[
γ̂0 + ;̂0Vi + e0i

]
DiYi =Di

[
γ̂1 + ;̂1Vi + e1i

]
and is based on the following relations:

Ê
(
Y0|X = x

)
= γ̂0 + ;̂0V (x) Ê

(
Y1|X = x

)
= γ̂1 + ;̂1V (x)

ÂTE =
1
n

n∑
i=1

(
Ê
(
Y1|X = Xi

)
– Ê

(
Y0|X = Xi

))
=
1
n

n∑
i=1

(
γ̂1 + ;̂1Vi – γ̂0 – ;̂0Vi

)
= γ̂1 + ;̂1V̄ – γ̂0 – ;̂0V̄.

Our interactive regression can be rewritten as

Yi = !̂ + "̂∞Di + '̂Vi + 6̂Di
(
Vi – V̄

)
= !̂ + '̂Vi + Di

(
"̂∞ – 6̂V̄ + 6̂Vi

)
.

The following equalities hold between the two different parameterizations:

γ̂0 = !̂, ;̂0 = '̂, γ̂1 = !̂ + "̂∞ – 6̂V̄, ;̂1 = '̂ + 6̂.

Therefore the following equivalence relation holds:

ÂTE = γ̂1 + ;̂1V̄ – γ̂0 – ;̂0V̄ = !̂ + "̂∞ – 6̂V̄ +
(
'̂ + 6̂

)
V̄ – !̂ – '̂V̄ = "̂∞. (6)

In the special case when Vi are cluster dummy variables, eq. (6) is identical to
a fully saturated regression of the outcome on the treatment and cluster dummies
with full interactions and computes the cluster-weighted average of the cluster-
level estimates. More precisely, let Vi (s) = 1 (Xi ∈ s) for all clusters s = 1, . . . , S and
let V̄ (s) = 1

n
∑n

i=1 1 (Xi ∈ s). Then eq. (6) becomes

γ̂1 +
S∑
s=2

;̂1sV̄ (s) –
(

γ̂0 +
S∑
s=2

;̂0sV̄ (s)

)
(7)
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Let .̂11 = γ̂1, .̂01 = γ̂0, .̂1s = γ̂1 + ;̂1s, and .̂0s = γ̂0 + ;̂0s for s = 2, . . . , S. Then

eq. (7) =
S∑
s=1

(
.̂1s – .̂0s

) ∑n
i=1 1 (Xi ∈ s)

n
. (8)

But .̂1s – .̂0s is exactly the difference in the cluster s levels in Yi for Di = 1 and
Di = 0. This estimator achieves the semiparametric efficiency bound when only
cluster indicators are observable, but is not fully efficient when the covariates Xi
are also observable.

We now consider the LATE model when D ≠ Z, and show that the interact-
ive IV estimator "̂∞ is a sieve implementation of the semiparametrically efficient
average LATE estimator in Frolich (2006), which takes the form of

̂AvgLATE =
1
n
∑n

i=1

(
Ê
(
Y |Z = 1,X = Xi

)
– Ê

(
Y |Z = 0,X = Xi

))
1
n
∑n

i=1

(
Ê
(
D|Z = 1,X = Xi

)
– Ê

(
D|Z = 0,X = Xi

)) .
A sieve implementation of this estimator is based on the following relations:

Ê
(
Y |Z = 0,X = x

)
=γ̂0 + ;̂0V (x) , Ê

(
Y |Z = 1,X = x

)
= γ̂1 + ;̂1V (x)

Ê
(
D|Z = 0,X = x

)
=4̂0 + &̂0V (x) , Ê

(
D|Z = 1,X = x

)
= 4̂1 + &̂1V (x) ,

and uses the following four linear regressions:

(1 – Zi)Yi = (1 – Zi)
[
γ̂0 + ;̂0Vi + e0i

]
, ZiYi = Zi

[
γ̂1 + ;̂1Vi + e1i

]
(1 – Zi)Di = (1 – Zi)

[
4̂0 + &̂0Vi + e0i

]
, ZiDi = Zi

[
4̂1 + &̂1Vi + e1i

]
.

(9)

We can then write

̂AvgLATE =
γ̂1 – γ̂0 +

(
;̂1 – ;̂0

)
′

V̄

4̂1 – 4̂0 +
(
&̂1 – &̂0

)
′

V̄
. (10)

Proposition 2. ̂AvgLATE = "̂∞ for the interactive instrumental variable estimator
"̂∞.

When Vi are cluster indicators, the LATE analog of eq. (8) becomes
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"̂∞ =

∑S
s=1

(
.̂1s – .̂0s

) ∑n
i=1 1(Xi∈s)

n∑S
s=1

(
&̂1s – &̂0s

) ∑n
i=1 1(Xi∈s)

n

, (11)

where .̂1s – .̂0s is exactly the difference in the cluster s levels in Yi between Zi = 1
and Zi = 0, and &̂1s – &̂0s is the difference in the cluster s levels in Di between
Zi = 1 and Zi = 0. This estimator achieves the semiparametric efficiency bound
when only cluster indicators are observable, but is not fully efficient when the
covariates Xi are also observable. Under CI where D = Z, semiparametric effi-
ciency bounds are calculated in, among others, Hahn (1998) and Chen et al.
(2008). In the more general LATE case when D ≠ Z, the LATE efficiency bound
is calculated in Frolich (2006) as well as Hong and Nekipelov (2010) (Lemma 1
and Theorem 4). These results from the previous literature confirm the following
efficiency comparison:

Proposition 3.
√
n
(
"̂∞ – "0

) d
�→ N

(
0, 32

∞

)
, where 32

∞
≤ 323.

Under suitable regularity conditions, a consistent estimate of 32
∞

can be
obtained by an analog of eq. (3) and eq. (4) when Xi and X̄ are replaced by sieve
expansions Vi and V̄:

:̄i∞ =
(
Zi – p̂z

)
:̂i∞ + p̂z

(
1 – p̂z

)
6̂′
(
Vi – V̄

)
.

where 6̂ are the coefficients on Zi
(
Vi – V̄

)
and p̂z = Z̄. For ĈovZ,D = 1

n
∑

ZiDi– Z̄D̄,
a consistent estimate of 32

∞
is given by

3̄2
∞
= Ĉov–2Z,D

1
n

n∑
i=1

:̄2i∞

4 Covariate adaptive randomization

We now move beyond the i.i.d. sampling framework and consider the covariate
adaptive randomization scheme discussed in Bugni et al. (2017a) and Bugni et al.
(2017a) (BCS 2017a, BCS 2017b) where units are first assigned to a finite number
of strata using baseline covariates and then are assigned treatment status using
the instrument. Unlike BCS 2017b, we do not allow for multiple treatments, so we
will describe how our notation differs from BCS 2017a.
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1. Our treatment variables are D1 and D0 corresponding to Z = 1 and Z = 0
respectively while BCS 2017a use A to denote the treatment in the case where
D = Z.

2. Our baseline covariates which determine stratum membership are denoted by
X while BCS 2017a use Z.

3. Our target proportion of units assigned to treatment in each stratum is denoted
by pz while BCS 2017a use 0.

We also note that our notation will differ from chapter 9 of Imbens and Rubin
(2015) in the following ways:
1. Our treatment variables are D1 and D0 while Imbens and Rubin (2015) assume

D = Z and useW to denote the treatment.
2. We follow BCS 2017a and use Si ∈ {1, 2, ..., S} to denote the stratum of unit i

while Imbens and Rubin (2015) define a variable Bi(j) which is an indicator for
unit i belonging in stratum j for j ∈ {1, ..., J}.

3. We use pz (s) to denote the proportion of treated units in stratum s while
Imbens and Rubin (2015) use e (j).

With more than one stratum, BCS 2017b have already shown that interact-
ing the instrument with strata indicators improves efficiency, and they allow
for different conditional targeted randomization probabilities across strata. Our
contribution is twofold. First we extend BCS 2017a and BCS 2017b to allow for non-
compliance by operating under the LATE framework and IV regression. Second
we show how additional covariates beyond strata indicators further enhance effi-
ciency and derive an efficient semiparametric sieve based estimator. Results in
the previous sections correspond to the single stratum case and coincide in the
special case of D = Z with simple OLS and adjusted but non-interacted OLS.

Similar to BCS 2017a, consider a sampling scheme where (Y1i,Y0i,D1i,D0i,Xi)
are drawn i.i.d from a superpopulation and are first assigned to a finite set of
clusters using a function S : supp(Xi) → S based on the value of Xi before treat-
ment status is assigned using Zi. As in BCS 2017a, let Si = S (Xi), S(n) = (S1, . . . , Sn),
Z(n) = (Z1, . . . , Zn), p (s) = P (Si = s), and define a measure of imbalance in stratum
s relative to the target proportion pz as

Zn (s) =
1√
n

n∑
i=1

1 (Xi ∈ s) (Zi – pz) .

Assumption 8 .
1. Z(n) ⊥ (Y1i,Y0i,D1i,D0i,Xi, i = 1, . . . , n) |S(n).
2. P

(
Zi = 1|S(n)

)
= pz + Oa.s.

( 1
n
)
for all 1 ≤ i ≤ n.
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3. {Zn (s)s∈S |S(n)}
d
�→ N (0, GZ), where GZ = diag{32Z (s) : s ∈ S} and

32Z (s) = p (s) 4 (s) and 0 ≤ 4 (s) ≤ pz (1 – pz) ,∀s ∈ S.

4 (s) is a strata-specific scalar that equals 0 for all s ∈ S in the case of strong bal-
ance. An example of a sampling scheme that achieves strong balance is stratified
block randomization (see example 3.4 of BCS 2017a). Assumption 8 is modeled
after Assumption 2.2 in BCS 2017a but is different. It allows for non-compliance in
the sense that D ≠ Z.

Consider first the simple IV estimator "̂1 with instrument Z and regressor D.
Define for t1i = Y∗

1i – "0D1i and t0i = Y∗
0i – "0D0i,

9i =
[
t1i – Et1i

pz
+
t0i – Et0i
1 – pz

]
and 9 (s) = E

[
9i|Xi ∈ s

]
.

Proposition 4. Under Assumption 8,
√
n
(
"̂1 – "0

) d
�→ N

(
0, 321fs1 + 321fs2 + 32∞

)
,

where

321fs1 =
pz (1 – pz)
P (D1 > D0)2

S∑
s=1

p (s)Var
(
9i|s

)
, 321fs2 =

∑S
s=1 9 (s)2 p (s) 4 (s)
P (D1 > D0)2

,

32
∞
=
Var [t1i – t0i]
P (D1 > D0)2

.

Furthermore, plim 3̂21 ≥ 321fs + 32
∞

where the inequality is strict when 4 (s) <
pz (1 – pz).

Therefore, 2SLS nominal standard errors are in general conservatively valid and
only asymptotically accurate when 4 (s) = pz (1 – pz). We note that Proposi-
tion 4 has already been shown in Theorem 4.1 of BCS 2017a when D = Z. Our
contribution is to extend their results to the case of D ≠ Z.

Next consider the adjusted regression "̂2, where Xi is replaced by cluster
dummies

Vi = {1 (Xi ∈ s) , s ∈ S}.

Proposition 5. Under Assumption 8,
√
n
(
"̂2 – "0

) d
�→ N

(
0, 322fs1 + 322fs2 + 32∞

)
,

where 322fs1 = 321fs1, and
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322fs2 = P (D1 > D0)–2
S∑
s=1

p (s) 4 (s)
(

1 – 2pz
pz (1 – pz)

(t1 (s) – t0 (s))
)2

.

where t1 (s) = E
(
t1i|Xi ∈ s

)
and t0 (s) = E

(
t0i|Xi ∈ s

)
. Furthermore, plim 3̂22 = 322fs1 +

3̄22fs2 + 32∞, where 3̄22fs2 ≥ 322fs2,

3̄22fs2 = P (D1 > D0)–2
S∑
s=1

p (s)
1

pz (1 – pz)
((1 – 2pz) (t1 (s) – t0 (s)))2 .

Consequently, nominal 2SLS standard errors are generally conservative and only
asymptotically valid when either 4 (s) ≡ pz (1 – pz) or pz = 1

2 . We emphasize that
the case of D = Z has already been shown in BCS 2017a. Our contribution is only
to allow for noncompliance with D ≠ Z.

Proposition 6. Under Assumption 8,
√
n
(
"̂3 – "0

) d
�→ N

(
0, 323fs + 32∞

)
, where

323fs = 322fs1.Furthermore, plim 3̂23 ∈
[
323fs, 323fs + 32∞

]
.

The asymptotic variance of "̂3 is smaller than the variances of "̂1 and "̂2 by the
amount 321fs2 and 322fs2, respectively, except in the cases of pz = 1/2 or 4 (s) = 0, in
which case the asymptotic variances of "̂3 and "̂2 are the same. As before the case
of D = Z in Proposition 6 follows from results that have already been shown in
BCS 2017b. Our contribution is to allow for noncompliance.

In addition, even if the targeted randomization probability is specific to each
cluster, namely pz (s) can differ across clusters, if we replace Assumption 8.2 by

P
(
Zi = 1|S(n),Xi ∈ s

)
= pz (s) + Oa.s.

(
1
n

)
and 4 (s) ≤ pz (s) (1 – pz (s)) ,

"̂3 continues to be consistent and Proposition 6 continues to hold with

323fs = P (D1 > D0)–2
∑
s∈S

p (s) pz (s) (1 – pz (s))Var
(
9i|s

)
.

When pz (s) ≡ pz, nominal 2SLS robust standard errors overestimate 323fs but
underestimate 323fs + 32∞. A consistent estimate for 323fs + 32∞ can be obtained by

Ĉov–2Z,D
1
n

n∑
i=1

((
Zi – p̂z

)
:̂i∞ + p̂z

(
1 – p̂z

)
6̂′
(
Vi – V̄

))2

where 6̂ are the coefficients on Zi
(
Vi – V̄

)
, p̂z = Z̄, and ĈovZ,D = 1

n
∑

ZiDi – Z̄D̄.
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Additional covariates Xi can be utilized to improve efficiency beyond the
cluster indicators. Asymptotic efficiency is obviously maximized by the semipara-
metric estimators in section 3, e.g. Chen et al. (2008) and Frolich (2006), where
both the cluster dummies and sieve transformations of increasing dimensions of
Xi and their interactions are included inVi when defining the sieve 2SLS estimator
"̂∞. Here we investigate the efficiency improvement from interacting the finite
dimensional functions of Xi (which we denote for convenience as Xi) with Zi and
the cluster dummies. We can equivalently rewrite this estimator as

"̂S =

∑
s∈S p̂ (s)

(
γ̂1s – γ̂0s +

(
;̂1s – ;̂0s

)
′

X̄s
)

∑
s∈S p̂ (s)

(
4̂1s – 4̂0s +

(
&̂1s – &̂0s

)
′

X̄s
)

where p̂ (s) = 1
n
∑n

i=1 1 (Xi ∈ s), X̄s = 1
n
∑n

i=1 1 (Xi ∈ s)Xi/p̂ (s), and the coefficients
are obtained using four sets of cluster-specific regressions using only the s cluster:

(1 – Zi)Yi = (1 – Zi)
[
γ̂0s + ;̂0sXi + e0i

]
, ZiYi = Zi

[
γ̂1s + ;̂1sXi + e1i

]
(1 – Zi)Di = (1 – Zi)

[
4̂0s + &̂0sXi + e0i

]
, ZiDi = Zi

[
4̂1s + &̂1sXi + e1i

]
.

(12)

Proposition 7. For 32Sfs < 323fs,
√
n
(
"̂S – "0

) d
�→ N

(
0, 32Sfs + 32∞

)
,

In the special case of D = Z, .̂1s = 1, .̂0s = 0, &̂1s = &̂0s = 0. Therefore,

"̂S =
∑
s∈S

p̂ (s)
(

γ̂1s – γ̂0s +
(
;̂1s – ;̂0s

)
′

X̄s
)

A consistent estimate of 32Sfs + 32
∞

can again be obtained using an analytical
expression.

5 Monte Carlo simulations

The purpose of these simulations is to perform efficiency comparisons for the
three different estimators in both the CI and LATE models, with and without
covariate adaptive randomization.

The data generating process for the CI model is as follows:

Yi = "0 + "1Di + "2DiX2i + "3Xi + :i, :i ∼ N (0, 1) , :i ⊥ Di
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where "0 = 1, "1 = 0.5, and "2 = "3 = –1. The single covariate is generated as
Xi ∼ N (,x = 10, 3x = 5) ,Xi ⊥ Di, :i.

Without covariate adaptive randomization, the treatment Di is generated as
Di ∼ Bern (0.5).

With covariate adaptive randomization, there are two strata Si = 1 (Xi > ,x).
Under block randomization, pz# {Si = 0} elements are assigned to treatment in
strata 0 and pz# {Si = 1} elements are assigned to treatment in strata 1. Under
simple randomization, Di|Si = s ∼ Binomial (# {Si = s} , pz) for s = 0, 1.

For the LATE model, the data generating process is

Di = γ0 + γ1Zi + -i > 0
Yi = "0 + "1Di + "2DiX2i + "3Xi + :i(

-i
:i

)
∼ N

((
0
0

)
,
(

2 0.5
0.5 2

))

where γ0 = 1, γ = 10, "0 = 1, "1 = 0.5, and "2 = "3 = –1.
Without covariate adaptive randomization, the instrument Zi is generated

as Zi ∼ Bern (0.5). With covariate adaptive randomization, there are two strata
Si = 1 (Xi > ,x). Under block randomization, pz# {Si = 0} elements are assigned to
treatment in strata 0 and pz# {Si = 1} elements are assigned to treatment in strata
1. Under simple randomization, Zi|Si = s ∼ Binomial (# {Si = s} , pz) for s = 0, 1.

We consider the simple (L)ATE estimatorwithout covariates, the (L)ATE estim-
ator with the covariate, and the (L)ATE estimator with the covariate and the
interaction between the instrument and the covariate. In the case of covariate
adaptive randomization, the covariate is the stratum indicator V.

The first row of Table 1 shows the average Monte Carlo standard errors for the
ATE estimates which are the standard deviations of the estimates across 20000
Monte Carlo simulations. The next two rows show the ATE average standard errors
and average confidence interval length using nominal robust OLS standard errors
for "̂1 and "̂2 and the analytic correction for "̂3 in Corollary 3. The number of
observations is n = 2000.

Table 1: ATE without covariate adaptive randomization.

reg Y D reg Y D X reg Y D X D*
(
X – X̄

)

Monte Carlo Standard Err 3.49 2.49 2.49
Avg Standard Err 3.50 2.50 2.50
Avg Length of CI 13.74 9.80 9.79
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We can see that relative to the baseline model with just the treatment on the
right hand side, the Monte Carlo standard error decreases when we include the
uninteracted covariate andwhenwe also include the interaction between the cov-
ariate and the treatment. The same pattern holds for the average standard errors.
Additionally, the average confidence interval length decreases when we add in
the uninteracted covariate and when we also include the interaction between the
covariate and the treatment.

The first rows of Tables 2 and 3 show the average Monte Carlo standard errors
which are the standard deviations of the estimates across 20000Monte Carlo sim-
ulations. The next two rows show the ATE average standard errors and average
confidence interval length under covariate adaptive block and simple randomiza-
tion with pz = 0.3 using nominal robust OLS standard errors for "̂1 and "̂2 and the
analytic correction for "̂3. The number of observations is n = 2000.

For covariate adaptive block randomization, the Monte Carlo standard error
is the same for all three estimators. Nominal OLS standard errors for the unadjus-
ted and uninteracted estimators are conservative, while standard errors obtained
using the analytic correction are not.

For covariate adaptive simple randomization, the Monte Carlo standard error
is highest for the unadjusted model and is lowest for the interacted model. Nom-
inal OLS and analytically corrected standard errors are not conservative and
exhibit the same pattern as the Monte Carlo standard errors.

The first rows of Tables 4 and 5 show the average Monte Carlo standard errors
which are the standard deviations of the estimates across 20000Monte Carlo sim-
ulations. The next two rows show the ATE average standard errors and average

Table 2: ATE with covariate adaptive block randomization, pz = 0.3.

reg Y D reg Y D V reg Y D V D*
(
V – V̄

)

Monte Carlo Standard Err 3.46 3.46 3.46
Avg Standard Err 4.52 3.78 3.45
Avg Length of CI 17.70 14.82 13.51

Table 3: ATE with covariate adaptive simple randomization, pz = 0.3.

reg Y D reg Y D V reg Y D V D*
(
V – V̄

)

Monte Carlo Standard Err 4.52 3.79 3.46
Avg Standard Err 4.52 3.79 3.45
Avg Length of CI 17.72 14.85 13.53
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Table 4: ATE with covariate adaptive block randomization, pz = 0.5.

regY D regY D V regY D V D*
(
V – V̄

)

Monte Carlo Standard Err 2.90 2.90 2.90
Avg Standard Err 3.50 2.90 2.90
Avg Length of CI 13.74 11.38 11.38

Table 5: ATE with covariate adaptive simple randomization, pz = 0.5.

regY D regY D V regY D V D*
(
V – V̄

)

Monte Carlo Standard Err 3.51 2.90 2.90
Avg Standard Err 3.51 2.91 2.90
Avg Length of CI 13.74 11.39 11.38

confidence interval length under covariate adaptive block and simple randomiza-
tion with pz = 0.5 using nominal robust OLS standard errors for "̂1 and "̂2 and the
analytic correction for "̂3. The number of observations is n = 2000.

For covariate adaptive block randomization, the Monte Carlo standard error
is the same for all three estimators. Nominal OLS standard errors are conservat-
ive for the unadjusted estimator but not for the uninteracted estimator. Standard
errors obtained using the analytic correction are also not conservative.

For covariate adaptive simple randomization, the Monte Carlo standard error
is highest for the unadjustedmodel and decreaseswhenwe add covariates. Unlike
the case of pz = 0.3, now the uninteracted estimator and the interacted estimator
have the same standard errors. Nominal OLS and analytically corrected stand-
ard errors are not conservative and exhibit the same pattern as the Monte Carlo
standard errors.

The first rows of Tables 6 and 7 show the average Monte Carlo standard errors
which are the standard deviations of the estimates across 20000Monte Carlo sim-
ulations. The next two rows show the ATE average standard errors and average
confidence interval length under covariate adaptive block and simple randomiza-
tion with pz = 0.7 using nominal robust OLS standard errors for "̂1 and "̂2 and the
analytic correction for "̂3. The number of observations is n = 2000.

For covariate adaptive block randomization, the Monte Carlo standard error
is the same for all three estimators. However, just like for pz = 0.3, nominal OLS
standard errors for the unadjusted and uninteracted estimators are conservative,
while standard errors obtained using the analytic correction are not.

For covariate adaptive simple randomization, the Monte Carlo standard error
is highest for the unadjusted model and is lowest for the interacted model.
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Table 6: ATE with covariate adaptive block randomization, pz = 0.7.

reg Y D reg Y D V reg Y D V D*
(
V – V̄

)

Monte Carlo Standard Err 2.63 2.63 2.63
Avg Standard Err 2.97 3.06 2.63
Avg Length of CI 11.63 12.01 10.33

Table 7: ATE with covariate adaptive simple randomization, pz = 0.7.

reg Y D reg Y D V reg Y D V D*
(
V – V̄

)

Monte Carlo Standard Err 2.98 3.05 2.63
Avg Standard Err 2.97 3.06 2.64
Avg Length of CI 11.63 12.01 10.33

Table 8: LATE without covariate adaptive randomization.

ivreg Y (D=Z) ivreg Y (D=Z) X ivreg Y (D=Z)
X Z*

(
X – X̄

)

Monte Carlo Standard Err 19.31 8.66 8.67
Avg Standard Err 19.49 8.67 8.67
Avg Length of CI 76.40 33.99 34.00

Nominal OLS and analytically corrected standard errors are not conservative and
exhibit the same pattern as the Monte Carlo standard errors.

The first row of Table 8 shows the average Monte Carlo standard errors for the
LATE estimates which are the standard deviations of the estimates across 20000
Monte Carlo simulations. The next two rows show the LATE average standard
errors and average confidence interval length using nominal robust 2SLS standard
errors for "̂1 and "̂2 and the analytic correction for "̂3 in Corollary 3. The number of
observations is n = 2000. We can see that relative to the baseline model with just
the treatment on the right hand side, the Monte Carlo standard error decreases
when we include either the uninteracted covariate by itself or with the interaction
between the covariate and the instrument. The same pattern holds for the average
standard errors. Additionally, the average confidence interval length decreases
when we add in just the uninteracted covariate and when we also include the
interaction between the covariate and the instrument.

The first rows of Tables 9 and 10 show the average Monte Carlo standard
errors which are the standard deviations of the estimates across 20000 Monte
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Table 9: LATE with covariate adaptive block randomization, pz = 0.3.

ivreg Y (D=Z) ivreg Y (D=Z) V ivreg Y (D=Z)
V Z*

(
V – V̄

)

Monte Carlo Standard Err 14.78 14.78 14.78
Avg Standard Err 21.76 14.92 14.84
Avg Length of CI 85.30 58.50 58.18

Table 10: LATE with covariate adaptive simple randomization, pz = 0.3.

ivreg Y (D=Z) ivreg Y (D=Z) V ivreg Y (D=Z)
V Z*

(
V – V̄

)

Monte Carlo Standard Err 21.71 14.85 14.79
Avg Standard Err 21.79 14.94 14.86
Avg Length of CI 85.42 58.57 58.23

Carlo simulations. The next two rows show the LATE average standard errors and
average confidence interval length under covariate adaptive block and simple
randomization with pz = 0.3 using nominal robust 2SLS standard errors for
"̂1 and "̂2 and the analytic correction for "̂3. The number of observations is
n = 2000.

For covariate adaptive block randomization, the Monte Carlo standard error
is the same for all three estimators. However, the nominal 2SLS standard errors for
the unadjusted estimator is very conservative, while the nominal 2SLS standard
errors for the uninteracted estimator and the analytic correction standard errors
for the interacted estimator are not particularly conservative.

For covariate adaptive simple randomization, the Monte Carlo standard error
is highest for the unadjusted model and is lowest for the interacted model.
Nominal 2SLS and analytically corrected standard errors are not particularly
conservative and exhibit the same pattern as the Monte Carlo standard errors.

The first rows of Tables 11 and 12 show the average Monte Carlo standard
errors which are the standard deviations of the estimates across 20000 Monte
Carlo simulations. The next two rows show the LATE average standard errors and
average confidence interval length under covariate adaptive block and simple
randomization with pz = 0.5 using nominal robust 2SLS standard errors for "̂1
and "̂2 and the analytic correction for "̂3. The number of observations is n = 2000.

For covariate adaptive block randomization, the Monte Carlo standard error
is the same for all three estimators. Nominal 2SLS standard errors for the
unadjusted estimator are conservative, while nominal 2SLS standard errors for
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Table 11: LATE with Covariate adaptive block randomization, pz = 0.5.

ivreg Y (D=Z) ivreg Y (D=Z) V ivreg Y (D=Z)
V Z*

(
V – V̄

)

Monte Carlo Standard Err 13.60 13.60 13.60
Avg Standard Err 19.46 13.63 13.63
Avg Length of CI 76.30 53.43 53.43

Table 12: LATE with Covariate Adaptive Simple Randomization, pz = 0.5.

ivregY (D=Z) ivregY (D=Z) V ivregY (D=Z)
V Z*

(
V – V̄

)

Monte Carlo Standard Err 19.49 13.58 13.58
Avg Standard Err 19.49 13.64 13.63
Avg Length of CI 76.40 53.46 53.45

the uninteracted estimator are not. Standard errors obtained using the analytic
correction are also not conservative.

For covariate adaptive simple randomization, the Monte Carlo standard error
is highest for the unadjustedmodel and decreaseswhenwe add covariates. Unlike
the case of pz = 0.3, now the uninteracted estimator and the interacted estimator
have the same standard errors. Nominal 2SLS and analytically corrected stand-
ard errors are not conservative and exhibit the same pattern as the Monte Carlo
standard errors.

The first rows of Tables 13 and 14 show the average Monte Carlo standard
errors which are the standard deviations of the estimates across 20000 Monte
Carlo simulations. The next two rows show the LATE average standard errors and
average confidence interval length under covariate adaptive block and simple
randomization with pz = 0.7 using nominal robust 2SLS standard errors for "̂1
and "̂2 and the analytic correction for "̂3. The number of observations is n = 2000.

For covariate adaptive block randomization, the Monte Carlo standard error
is the same for all three estimators. However, just like in Table 9, nominal
2SLS standard errors for the unadjusted estimator are very conservative, while
standard errors for the uninteracted and interacted estimators are not.

For covariate adaptive simple randomization, the Monte Carlo standard error
is highest for the unadjustedmodel, decreases whenwe add the uninteracted cov-
ariate, and is the lowest for the interacted model. Nominal 2SLS and analytically
corrected standard errors are not conservative and exhibit the same pattern as the
Monte Carlo standard errors.
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Table 13: LATE with Covariate adaptive block randomization, pz = 0.7.

ivreg Y (D=Z) ivreg Y (D=Z) V ivreg Y (D=Z)
V Z*

(
V – V̄

)

Monte Carlo Standard Err 14.94 14.93 14.93
Avg Standard Err 20.72 14.95 14.87
Avg Length of CI 81.21 58.60 58.27

Table 14: LATE with covariate adaptive simple randomization, pz = 0.7.

ivreg Y (D=Z) ivreg Y (D=Z) V ivreg Y (D=Z)
V Z*

(
V – V̄

)

Monte Carlo Standard Err 20.91 15.03 14.95
Avg Standard Err 20.75 14.95 14.87
Avg Length of CI 81.35 58.62 58.27

6 Empirical application

We investigate the efficiency improvement in ATE estimates after including the
interaction between the exogenous treatment and the demeaned covariate in a
dataset with over 2million observations. Each observation is an expiry auction for
a particular domain name listed on GoDaddy, an online platform where domain
names which are no longer maintained by an individual are auctioned off in an
open-bid English auction with a minimum bid of $12 and a duration of approx-
imately 10 days. One interesting fact about these auctions is that the majority of
participants are speculators who have no intrinsic use of the domain name except
turning a profit when they resell the name in an aftermarket. Another interesting
fact is that very few of the English auctions result in sale, partly due to the sheer
volume of domain names that are listed for sale. For example, only 1.3% of auc-
tions with a start time on or after May 12th, 2017 and before July 11th, 2017 had
bids at or above the minimum bid.

Starting on May 12th, 2017, GoDaddy implemented a simple randomized
experiment where some domain nameswould receive a valuationmetric provided
by a machine learning algorithm using deep learning. The idea was to provide
auction participants with a better sense of the value of a domain name using fea-
tures such as the length of the domain name, how many words in the domain
name are part of the English dictionary, and whether the domain name is a .com,
.net, or .org. The algorithm performed better than many existing approaches for
predicting whether the domain name would sell and if so, at what price. At the
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Table 15: ATE of valuation on sale price conditional on entry for 9283 auctions from May 12th,
2017 to June 1st, 2017.

reg Y D reg Y D X reg Y D X D*
(
X – X̄

)

X=length of domain name
"̂ 1.6754 1.0673 1.0682
se
(
"̂
)

6.1526 6.1325 6.1402
X=length,is.com,is.net,is.org

"̂ 1.6754 0.8519 0.8584
se
(
"̂
)

6.1526 6.1165 6.1301
X=length,is.com,is.net,is.org,contains English word

"̂ 1.6754 0.7859 0.7894
se
(
"̂
)

6.1526 6.1966 6.1301

start of the experiment, the treatment probability was 50%, but starting June 1st,
2017, it became 75%. Then on July 11th, 2017, the treatment probability became
100%.

In table 15, we look at the average treatment effect of including the valuation
on the sale price conditional on at least one bidder meeting the minimum bid
requirement for auctions with start times between May 12th, 2017 and June 1st,
2017. Of the 812026 auctions which occurred during this time frame, only 9283
auctions met the minimum bid requirement. In the first column, we estimate the
ATE without any covariates to be 1.6754 with a standard error of 6.1526. In the
second column, we add different combinations of the following covariates: the
length of the domain name, whether the top level domain is .com, .net, or .org,
andwhether the domain name contains any words in the English dictionary. After
including all of these covariates, the ATE becomes 0.7859 and the standard error
increases to 6.1966. In the third column, we include the covariates and the inter-
actions between the treatment and the demeaned covariates. The ATE becomes
0.7894, and the standard error decreases to 6.1301.

In table 16, we look at the average treatment effect of including the valuation
on the sale price conditional on at least one bidder meeting the minimum bid
requirement for auctions with start times between June 1st, 2017 and July 11th,
2017. Of the 1366161 auctions in this time frame, only 19165 auctions met the min-
imum bid requirement. In the first column, we estimate the ATE without any
covariates to be 12.6569 with a standard error of 4.4770. In the second column, we
add different combinations of the following covariates: the length of the domain
name, whether the top level domain is .com, .net, or .org, andwhether the domain
name contains any words in the English dictionary. After including all of these
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Table 16: ATE of valuation on sale price conditional on entry for 19165 auctions from June 1st,
2017 to July 11th, 2017.

reg Y D reg Y D X reg Y D X D*
(
X – X̄

)

X=length of domain name
"̂ 12.6569 14.1856 13.8739
se
(
"̂
)

4.4770 4.5152 4.4655
X=length,is.com,is.net,is.org

"̂ 12.6569 14.8170 13.8605
se
(
"̂
)

4.4770 4.5488 4.4627
X=length,is.com,is.net,is.org,contains English word

"̂ 12.6569 14.3432 13.1778
se
(
"̂
)

4.4770 4.6244 4.4617

covariates, the ATE becomes 14.3432 and the standard error increases to 4.6244.
In the third column, we include the covariates and the interactions between
the treatment and the demeaned covariates. The ATE becomes 13.1778, and the
standard error decreases to 4.4617.

In table 17, we look at the average treatment effect of including the valuation
on the sale price conditional on at least one bidder meeting the minimum bid
requirement for auctions with start times between May 12th, 2017 and July 11th,
2017. Of the 2178187 auctions in this time frame, only 28448 auctions met the
minimum bid requirement. In the first column, we estimate the ATE without any
covariates to be 6.6893 with a standard error of 3.8301. In the second column, we
add different combinations of the following covariates: the length of the domain

Table 17: ATE of valuation on sale price conditional on entry for 28448 auctions fromMay 12th,
2017 to July 11th, 2017.

reg Y D reg Y D X reg Y D X D*
(
X – X̄

)

X=length of domain name
"̂ 6.6893 7.2388 7.1763
se
(
"̂
)

3.8301 3.8316 3.8226
X=length,is.com,is.net,is.org

"̂ 6.6893 6.9263 6.7882
se
(
"̂
)

3.8301 3.8377 3.8186
X=length,is.com,is.net,is.org,contains English word

"̂ 6.6893 6.7003 6.4064
se
(
"̂
)

3.8301 3.8848 3.8183
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name, whether the top level domain is .com, .net, or .org, andwhether the domain
name contains any words in the English dictionary. After including all of these
covariates, the ATE becomes 6.7003 and the standard error increases to 3.8848.
In the third column, we include the covariates and the interactions between
the treatment and the demeaned covariates. The ATE becomes 6.4064, and the
standard error decreases to 3.8183.

7 Conclusion

This paper has compared the relative efficiencies of different types of OLS
and 2SLS estimators in randomized or conditionally randomized experiments.
Although the results are presented in the context of (local) average treatment
effects, they can be generalized to nonlinear parameters including quantile
treatment effects. Further extensions include propensity score regression and
regression discontinuity models.
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Appendix

A Proof of Theorem 1

For k = 1, 2, 3, letWik denote the instruments, letVik andUik denote the regressors,
and let (k denote the parameters of the instrumental variable moment condition
EWik

(
Yi – V ′ik(0k

)
= 0. The estimators (̂k are defined by the sample estimating

equations:

1
n

n∑
i=1

Wik
(
Yi – V ′ik(̂k

)
+
1
n

n∑
i=1

WikUik6̂′
(
X̄ – ,x

)
= 0. (13)

For "̂1, let Ui1 = 0, pz = P (Zi = 1), pd = P (Di = 1), Wi1 = (1 Zi – pz) ,Vi1 =
(1 Di – pd), and (1 = (!, "). For "̂2, let Ui2 = 0, Wi2 = (1 Zi – pz Xi – ,x) Vi2 =
(1 Di – pd Xi – ,x), (2 = (!, ", '). For "̂3, let Ui3 = Zi – pz, (3 = (!, ", ',6) ,Wi3 =
(1 Zi – pz Xi – ,x (Zi – pz) (Xi – ,x)), and Vi3 = (1 Di – pd Xi – ,x (Zi – pz) (Xi – ,x)).
eq. (13) leads to the following influence function representation of :
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√
n
(
(̂k – (0k

)
= (EWikVik)–1

1√
n

n∑
i=1

(
Wik

(
Yi – V ′ik(0

)
+ EWikUik60 (Xi – ,x)

)
+ oP(1).

It can be calculated that the second row of E (WikVik)–1 , k = 1, 2, 3 takes the forms
of

(
0 Cov (D, Z)–1

) (
0 Cov (D, Z)–1 0

) (
0 Cov (D, Z)–1 0 0

)
.

Therefore for k = 1, 2, 3,

√
n
(
"̂k – "0

)
=Cov (Z,D)–1

1√
n

n∑
i=1

8k (Yi, Zi,Xi,Wik,Vik,Uik) + oP(1),

8k (Yi, Zi,Xi,Wik,Uik,Vik) = (Zi – pz)
(
Yi – V ′ik(0

)︸ ︷︷ ︸
81ik

+E [(Zi – pz)Uik]60 (Xi – ,x)︸ ︷︷ ︸
82ik

≡ 8ik

(14)

Consequently,
√
n
(
"̂k – "0

) d
�→ N

(
0,Cov(D, Z)–2Var (8ik)

)
. It remains to show

that for j = 1, 2, Var (8i3) ≤ Var
(
8ij
)
. This can be done by showing that

Cov
(
8ij – 8i3,8i3

)
= 0. For this purpose, consider first j = 1. Note that

8i1 – 8i3 = (Zi – pz)
[
'′0 (Xi – ,x) + 6′0 (Xi – ,x) (Zi – pz)

]
–
(
pz – p2z

)
(Xi – ,x)′ 6

= (Zi – pz) '′0 (Xi – ,x)︸ ︷︷ ︸
B81i13

+ (Zi – pz)2 6′0 (Xi – ,x)︸ ︷︷ ︸
B82i13

–
(
pz – p2z

)
(Xi – ,x)′ 6︸ ︷︷ ︸

B83i13

.

(15)

It follows from Z2i = Zi and EWi3
(
Yi – V ′i3(0

)
= 0 that

Cov
(
81
i3,B8k

i13

)
= 0, k = 1, 2, 3

By independence of Zi from Xi, Cov
(
82
i3,B81

i13
)

= 0. Finally, we check
that Cov

(
82
i3,B82

i13
)

=
(
pz – p2z

)2 6′0Var (X)60, and Cov
(
82
i3,B83

i13
)

=(
pz – p2z

)2 6′0Var (X)60, so that

Cov
(
82
i3,B82

i13 – B83
i13
)
= 0.
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We have verified that Cov (B8i13,8i3) = 0, and "̂3 is more efficient than "̂1
asymptotically.

Next turn to "̂2 and 8i2 = (Zi – pz)
(
Yi – !0 – "0 (Di – pd) – '′0 (Xi – ,x)

)
. We

want to show Var (8i3) ≤ Var (8i2) by verifying that Cov (B8i23,8i3) = 0, where

B8i23 = (Zi – pz)2 6′0 (Xi – ,x) –
(
pz – p2z

)
6′0 (Xi – ,x)

=
(
(1 – 2pz) Zi + p2z

)
6′0 (Xi – ,x)︸ ︷︷ ︸

B81i23

–
(
pz – p2z

)
6′0 (Xi – ,x)︸ ︷︷ ︸
B82i23

. (16)

By the moment conditions EWi3
(
Yi – V ′i3(0

)
= 0,

Cov
(
81
i3,B8k

i23

)
= 0, , k = 1, 2.

By independence between Z and X

Cov
(
82
i3,B81

i23
)
=
(
pz – p2z

)2 6′0Var (X)60.

Therefore since also Cov
(
82
i3,B82

i23
)
=
(
pz – p2z

)2 6′0Var (X)60, it follows that

Cov
(
82
i3,B81

i23 – B82
i23
)
= 0.

So Cov (B8i23,8i3) = 0, and Var (8i3) ≤ Var (8i1). "̂3 is also more efficient than "̂2.
However, there is no efficiency ranking between "̂1 and "̂2. Note that

B8i12 ≡ 8i1 – 8i2 = (Zi – pz) '′0 (Xi – ,x) .

There is no guarantee of either Cov (B8i12,8i2) = 0 or Cov (B8i12 (W) ,8i1 (W)) = 0.
This is because the moment conditions for "̂2 do not impose that

EZX
(
Y – !0 – "0D – '′0X

)
= 0,

and the moment conditions for "̂1 do not impose

EZX (Y – !0 – "0D) = 0 or EX (Y – !0 – "0D) = 0.

B Proof of Corollary 1

Under the causal model, the parameter "0 and the influence functions for "̂
can be written using the counterfactuals. Recall that "0 = E

(
Y1 – Y0|D1 > D0

)
=
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E
(
Y∗
1 – Y∗

0
)
/E (D1 – D0). Define t1 = Y∗

1 – "0D1, t0 = Y∗
0 – "0D0. Then

!0 – "0pd =EY – "0ED = pzEt1 + (1 – pz)Et0
81 = (Z – pz) (Y – !0 – "0 (D – pd))

= (Z – pz) ((1 – pz) (t1 – Et1) + pz (t0 – Et0)) + pz (1 – pz) (t1 – t0) ,

where by definition Et1 –Et0 = 0. Next consider "̂2. It follows from the 3rdmoment
equation E (X – ,x) (Y – !0 – "0 (D – pd) – '0 (X – ,X)) = 0 that

'0 = Var (X)–1 Cov (X,Y – "0D) = Var (X)–1 [pzCov (X, t1) + (1 – pz)Cov (X, t0)] ,

and that

82 = (Z – pz) (Y – !0 – "0 (D – pd) – '0 (X – ,x))
= (Z – pz) ((1 – pz) (t1 – Et1) + pz (t0 – Et0) – '0 (X – ,x)) + pz (1 – pz) (t1 – t0) ,

Next consider "̂3. It follows from the 4th moment condition

E (Z – pz) (X – ,x) (Y – !0 – "0 (D – pd) – '0 (X – ,X) – 60 (Z – pz) (X – ,x)) = 0

that 60 = Var (X)–1 Cov (X, t1 – t0). Therefore,

81
3 = (Z – pz)

(
Y – !0 – "0 (D – pd) – '′0 (X – ,x) – 6′0 (Z – pz) (X – ,x)

)
= (Z – pz)

(
(1 – pz)

(
t1 – Et1 – Cov (t1,X)Var (X)–1 (X – ,x)

)
+ pz

(
t0 – Et0 – Cov (t0,X)Var (X)–1 (X – ,x)

))
+ pz (1 – pz)

(
(t1 – t0) – Cov (t1 – t0,X)Var (X)–1 (X – ,x)

)
and 82

3 = pz (1 – pz)Cov (t1 – t0,X)Var (X)–1 (X – ,x). Therefore

83 = (Z – pz)
(
Y – !0 – "0 (D – pd) – '′0 (X – ,x) – 6′0 (Z – pz) (X – ,x)

)
= (Z – pz)

(
(1 – pz)

(
t1 – Et1 – Cov (t1,X)Var (X)–1 (X – ,x)

)
+ pz

(
t0 – Et0 – Cov (t0,X)Var (X)–1 (X – ,x)

))
+ pz (1 – pz) (t1 – t0)

Using Z ⊥ (t1, t0,X), it can then be verified that

Cov (81 – 83,83) = 0 and Cov (82 – 83,83) = 0.
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In the special case when D = Z, t1 = Y1 – "0, t0 = Y0, "0 = E (Y1 – Y0), then

83 = (Z – pz)
(
(1 – pz)

(
Y1 – EY1 – Cov (Y1,X)Var (X)–1 (X – ,x)

)
+ pz

(
Y0 – EY0 – Cov (Y0,X)Var (X)–1 (X – ,x)

))
+ pz (1 – pz) (Y1 – Y0 – "0)

82 = (Z – pz)
(
(1 – pz) (Y1 – EY1)

+ pz (Y0 – EY0) – '0 (X – ,x)
)
+ pz (1 – pz) (Y1 – Y0 – "0) .

(17)

for '0 = Var (X)–1 [pzCov (X,Y1) + (1 – pz)Cov (X,Y0)].

C Proof of Corollary 2

Replace ,x by ,xs = EXs. Then it can be shown that "̂3 is more efficient than "̂4.
Similar calculations as those for "̂3 show that

√
n
(
"̂4 – "0

)
=Cov (D, Z)–1

1√
n

n∑
i=1

8i4 + oP(1), where

8i4 = (Zi – pz)
(
Yi – 10 – "0 (Di – pd) – '′0s (Xsi – ,xs) – 6′0s (Xsi – ,xs)

(Zi – pz)) +
(
pz – p2z

)
6′0s (Xsi – ,xs)

Then we can write, for '̄0, 6̄0 possibly different from both '0,60 and '0s,60s,

B8i43 = 8i4 – 8i3

= (Zi – pz)
[
'′0 (Xi – ,x) – '′0s (Xsi – ,xs) +

(
6′0 (Xi – ,x) – 6′0s (Xsi – ,xs)

)
(Zi – pz)] +

(
pz – p2z

)
(Xsi – ,xs)′ 60s –

(
pz – p2z

)
(Xi – ,x)′ 60

= (Zi – pz)
[
'̄′0 (Xi – ,x) + 6̄′0 (Xi – ,x) (Zi – pz)

]
–
(
pz – p2z

)
(Xi – ,x)′ 6̄0

= (Zi – pz) '̄′0 (Xi – ,x)︸ ︷︷ ︸
B81i43

+ (Zi – pz)2 6̄′0 (Xi – ,x)︸ ︷︷ ︸
B82i43

–
(
pz – p2z

)
(Xi – ,x)′ 6̄0︸ ︷︷ ︸
B83i43

.

It follows from Z2i = Zi, and the instrumental variable moment equations that

Cov
(
81
i3,B8k

i43

)
= 0, , k = 1, 2, 3

Bereitgestellt von | De Gruyter / TCS
Angemeldet

Heruntergeladen am | 10.07.18 14:04



OLS and 2SLS in Randomized Experiments 271

By independence of Zi and Xi, Cov
(
82
i3,B81

i43
)
= 0. Finally, we check that

Cov
(
82
i3,B82

i43
)
=
(
pz – p2z

)2 6′0Var (X) 6̄0,

and Cov
(
82
i3,B83

i43
)
=
(
pz – p2z

)2 8′0Var (X) 8̄0. so that

Cov
(
82
i3,B82

i43 – B83
i43
)
= 0.

We have verified that Cov (B8i43,8i3) = 0, and "̂3 is more efficient than "̂4 asymp-
totically. The same result can also be verified using the counter-factual model as
in Corollary 1.

D Proof of Corollary 3

Note Â–1k B̂kÂ
–1
k

p
→ Var

(
Dk

(
EWikV ′ik

)–1Wik
(
Yi – V ′ik(0k

))
, where

D1 =
[
1 –pd
0 1

]
D2 =

⎡⎢⎣ 1 –pd –,x
0 1 0
0 0 1

⎤⎥⎦ D3 =

⎡⎢⎢⎢⎣
1 –pd –,x pz,x
0 1 0 0
0 0 1 –pz
0 0 0 1

⎤⎥⎥⎥⎦
Using the sparse structure of EWikVik, the (2, 2) elements of A–1k BkA

–1
k are then

given by

Var
(
Cov (Zi,Di)–1 (Zi – pz)

(
Yi – V ′ik(0k

))
For k = 1, 2, this coincides with the asymptotic variance 32k in Theorem 1.
Theorem 1 also shows the asymptotic variance of "̂3 as

323 = Var
(
Cov (Zi,Di)–1

[
(Zi – pz)

(
Yi – V ′ik(0k

)
+ pz (1 – pz)60 (Xi – ,x)

])
By the moment condition E (Zi – pz) (Xi – ,x)

(
Yi – V ′ik(0k

)
= 0, 323 is at least as

large as

plim3̂23 = Var
(
Cov (Zi,Di)–1 (Zi – pz)

(
Yi – V ′ik(0k

))
(18)

A similar calculation shows that 3̄23
p
�→ 323. Of course one can also bootstrap.
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E Proof of Proposition 1

Consider first the case of D = Z. For ! + " = E
(
Y |Z = 1

)
, ! = E

(
Y |Z = 0

)
, and

,x = EX, the moment conditions are E6i (!0, "0, ,0x) = 0, where

6i (!, ", ,x)′ = (Zi (Yi – ! – ") , Zi (Xi – ,x) , (1 – Zi) (Yi – !) , (1 – Zi) (Xi – ,x)) ,

such that for A11 = Var
(
Yi|Zi = 1

)
, A12 = Cov

(
Yi,Xi|Zi = 1

)
= A′21, B11 = Var(Yi|Zi =

0), B12 = Cov
(
Yi,Xi|Zi = 0

)
= B′21, A22 = B22 = Var (Xi),

Var (6i (⋅)) =
(
pzA 0
0 (1 – pz)B

)
A =

(
A11 A12
A21 A22

)
B =

(
B11 B12
B21 B22

)
(19)

Then V̂ar (6i (⋅)) is similar to Var (6 (⋅)) with pz,A,B replaced by p̂z, Â, B̂.
An application of the partitioned matrix inversion formula shows that

the solution to eq. (5) is given by, for F2 =
(
A22 – A21A–111A12

)–1 and G2 =(
B22 – B21B–111 B12

)–1,
1
n

n∑
i=1

Zi (Yi – ! – ") – Â12Â–122
1
n

n∑
i=1

Zi (Xi – ,x) = 0

1
n

n∑
i=1

(1 – Zi) (Yi – !) – B̂12B̂–122
1
n

n∑
i=1

(1 – Zi) (Xi – ,x) = 0

– F̂2A21A–111
1
n

n∑
i=1

Zi (Yi – ! – ") + F2
1
n

n∑
i=1

Zi (Xi – ,x)

– Ĝ2B̂21B̂–111
1
n

n∑
i=1

(1 – Zi) (Yi – !) + Ĝ2
1
n

n∑
i=1

(1 – Zi) (Xi – ,x) = 0.

(20)

Substitute the first two equations into the third and simplify to

Â–122
1
n

n∑
i=1

Zi (Xi – ,x) + B̂–122
1
n

n∑
i=1

(1 – Zi) (Xi – ,x) = 0 (21)

Since Â22 = Var (Xi) + OP
(

1√
n

)
= B̂22 + OP

(
1√
n

)
, this can be used to show that

,̂x = X̄ + oP
(

1√
n

)
. And then
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!̂ + "̂ =
( n∑

i=1
ZiYi – Â12Â–122

n∑
i=1

Zi (Xi – ,x)
)
/

n∑
i=1

Zi + oP
(

1√
n

)

!̂ =
( n∑

i=1
(1 – Zi)Yi – B̂12B̂–122

n∑
i=1

(1 – Zi) (Xi – ,x)
)
/

n∑
i=1

(1 – Zi) + oP
(

1√
n

)

Up to oP
(

1√
n

)
terms, these are the intercept terms in separate regressions of Yi on

Xi – X̄ among the control and treatment groups.
These calculations can be extended to the LATE GMMmodel in eq. (5), where

we now define A11 = Var
(
Y – !0 – "0D|Z = 1

)
, A12 = Cov

(
Y – !0 – "0D,X|Z = 1

)
=

A′21, B11 = Var(Y – !0 – "0D|Z = 0), B12 = Cov
(
Y – !0 – "0D,X|Z = 0

)
= B′21, A22 =

B22 = Var (X), and let Âjk, B̂jk denote their
√
n consistent estimates. Then eqs. (19)

and (21) both continue to hold, leading to ,̂x = X̄+oP
(

1√
n

)
. The first two equations

in eq. (20) now become

1
n

n∑
i=1

Zi (Yi – ! – "Di) – Â12Â–122
1
n

n∑
i=1

Zi (Xi – ,x) = 0

1
n

n∑
i=1

(1 – Zi) (Yi – ! – "Di) – B̂12B̂–122
1
n

n∑
i=1

(1 – Zi) (Xi – ,x) = 0,

Note that given ! and ", Â12Â–122 and B̂12B̂–122 are precisely the profiled 6̂ and '̂
implied by the estimating eq. (13) for "3. In other words, the above two equations
are the concentrated estimating equations for ! and " implied by eq. (13).

F Proof of Proposition 2

LetW1i = (Zi, ZiVi)T andW0i = ((1 – Zi) , (1 – Zi)Vi)T . Then the normal equations
corresponding to eq. (9) are

1
n

n∑
i=1

W1i
(
Yi – γ̂1 – ;̂1Vi

)
= 0,

1
n

n∑
i=1

W0i
(
Yi – γ̂0 – ;̂0Vi

)
= 0.

1
n

n∑
i=1

W1i
(
Di – 4̂1 – &̂1Vi

)
= 0,

1
n

n∑
i=1

W0i
(
Di – 4̂0 – &̂0Vi

)
= 0.

Bereitgestellt von | De Gruyter / TCS
Angemeldet

Heruntergeladen am | 10.07.18 14:04



274 J. Ansel et al.

Taking a linear combination using "̂AL = ̂AvgLATE,

1
n

n∑
i=1

W1i
(
Yi – γ̂1 – ;̂1Vi – "̂AL

(
Di – 4̂1 – &̂1Vi

))
= 0

1
n

n∑
i=1

W0i
(
Yi – γ̂0 – ;̂0Vi – "̂AL

(
Di – 4̂0 – &̂0Vi

))
= 0

We rearrange this into

1
n

n∑
i=1

W1i
(
Yi – γ̂1 + "̂AL4̂1 +

(
"̂AL&̂1 – ;̂1

)
V̄ – "̂ALDi –

(
"̂AL&̂1 – ;̂1

) (
Vi – V̄

))
= 0

1
n

n∑
i=1

W0i
(
Yi – γ̂0 + "̂AL4̂0 +

(
"̂AL&̂0 – ;̂0

)
V̄ – "̂ALDi –

(
"̂AL&̂0 – ;̂0

) (
Vi – V̄

))
= 0

By the definition in eq. (10),

-̂ = γ̂1 – "̂AL4̂1 –
(
"̂AL&̂1 – ;̂1

)
V̄ = γ̂0 – "̂AL4̂0 –

(
"̂AL&̂0 – ;̂0

)
V̄.

The normal equations therefore take the form of

1
n

n∑
i=1

W1i
(
Yi – -̂ – "̂ALDi –

(
"̂AL&̂1 – ;̂1

) (
Vi – V̄

))
= 0

1
n

n∑
i=1

W0i
(
Yi – -̂ – "̂ALDi –

(
"̂AL&̂0 – ;̂0

) (
Vi – V̄

))
= 0

(22)

Next, consider the normal equations determining the interactive "̂∞. For Wi =
(W1i,W0i)T ,

1
n

n∑
i=1

Wi
(
Yi – !̂ – "̂∞Di – '̂

(
Vi – V̄

)
– 6̂Zi

(
Vi – V̄

))
= 0.

This can be rewritten as

1
n

n∑
i=1

W1i
(
Yi – !̂ – "̂∞Di –

(
'̂ + 6̂

) (
Vi – V̄

))
= 0

1
n

n∑
i=1

W0i
(
Yi – !̂ – "̂∞Di – '̂

(
Vi – V̄

))
= 0

(23)
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Then eq. (23) can be satisfied through eq. (22) by setting

!̂ = -̂, "̂∞ = "̂AL, '̂ = "̂AL&̂0 – ;̂0, 6̂ = "̂AL&̂1 – ;̂1 – '̂.

G Proof of Proposition 3

When D = Z, Hahn (1998) shows that 32
∞
= Var (8∞), where

8∞ =
D
p
(
Y1 – E

(
Y1|X

))
–
1 – D
1 – p

(
Y0 – E

(
Y0|X

))
+
(
E
(
Y1 – Y0|X

)
– E (Y1 – Y0)

)
= (D – p)

[
Y1 – E

(
Y1|X

)
p

+
Y0 – E

(
Y0|X

)
1 – p

]
+ Y1 – Y0 – E (Y1 – Y0)

We can then use 83 in the proof of Corollary 1 to show that

Cov
(
83/ (pz (1 – pz)) – 8∞,8∞

)
= 0.

More generally when Z ≠ D, the LATE efficiency bound was calculated in
Frolich (2006) and Hong and Nekipelov (2010) (Lemma 1 and Thm 4), with 32

∞
=

Var (8∞), and

8∞ =
1

P (D1 > D0)

{
Z
pz
(
Y – E

(
Y |Z = 1,X

))
+ E

(
Y |Z = 1,X

)
–

1 – Z
1 – pz

(
Y – E

(
Y |Z = 0,X

))
– E

(
Y |Z = 0,X

)
–
(
Z
pz
(
D – E

(
D|Z = 1,X

))
+ E

(
D|Z = 1,X

)
–

1 – Z
1 – pz

(
D – E

(
D|Z = 0,X

))
– E

(
D|Z = 0,X

))
"
}
,

where P (D1 > D0) = P
(
D = 1|Z = 1

)
– P

(
D = 1|Z = 0

)
. We can rewrite this as

P (D1 > D0)8∞ =
Z
pz
(
t1 – E

(
t1|X

))
–

1 – Z
1 – pz

(
t0 – E

(
t0|X

))
+ E

(
t1 – t0|X

)
= (Z – pz)

{ t1 – E (t1|X)
pz

+
t0 – E

(
t0|X

)
1 – pz

}
+ t1 – t0.

(24)

Again comparing this to 83 in the proof of Corollary 1 shows that

Cov
(
83/ (P (D1 > D0) pz (1 – pz)) – 8∞,8∞

)
= 0.
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The comparison between 82 and 83 in eq. (17) can also be understood in the
context of doubly robust estimators, which use influence functions of the form
similar to 8∞ but without requiring pz to be constant. Define Q (X) ≡ P

(
Z = 1|X

)
.

In the case of D = Z,

6∞ =
D

Q (X)
(
Y – E

(
Y1|X

))
–

1 – D
1 – Q (X)

(
Y – E

(
Y0|X

))
+
(
E
(
BY |X

)
– EBY

)
= (D – Q (X))

[
Y1 – E

(
Y1|X

)
Q (X)

+
Y0 – E

(
Y0|X

)
1 – Q (X)

]
+ (Y1 – Y0 – ")

The estimators with influence function 6∞ are consistent as long as either Q (X)
or the pair of E

(
Y1|X

)
,E
(
Y0|X

)
are correctly specified. Under complete random-

ization and with Q (X) specified as pz, the P-score model is obviously correctly
specified. Therefore E

(
Y1|X

)
and E

(
Y0|X

)
, being linear projections on (1 V (X)),

have no effect on consistency. However, between two misspecified conditional
meanmodels, the first pair in83 is amore efficient projection that induces a smal-
ler variance than the linear projection in 82. Similarly, in the general LATE case
when D ≠ Z, doubly robust estimators use influence functions of the form

6∞ =
(
D – Q̃ (X)

)[ t1 – E (t1|X)
Q (X)

+
t0 – E

(
t0|X

)
1 – Q (X)

]
+ (t1 – t0 – ") .

where E
(
t1|X

)
= E

(
Y∗
1 |X

)
– "0E

(
D1|X

)
and E

(
t0|X

)
= E

(
Y∗
0|X

)
– "0E

(
D0|X

)
. These

estimators are consistent as long as either Q (X) or the set of

E
(
Y∗
1 |X

)
,E
(
Y∗
0|X

)
,E
(
D1|X

)
,E
(
D0|X

)
.

are correctly specified. Among different misspecified linear approximations to
E
(
t1|X

)
and E

(
t0|X

)
, the least square projection is more efficient.

Similar to eqs. (3) and (4), 32
∞

can be consistently estimated under suitable
regularity conditions (such as those in Newey (1997)) by

3̄2
∞
= Ĉov–2Z,D

1
n

n∑
i=1

:̄2i∞ where :̄i∞ =
(
Zi – p̂z

)
:̂i∞ + p̂z

(
1 – p̂z

)
6̂∞

(
Vi – V̄

)

and :̂i∞ = Yi – !̂ – "̂∞Di – '̂
(
Vi – V̄

)
– 6̂Zi

(
Vi – V̄

)
. If we write

Yi – "̂∞Di = (1 – Zi)
(
!̂ + '̂

(
Vi – V̄

))
+ Zi

(
!̂ +

(
'̂ + 6̂

) (
Vi – V̄

))
+ :̂i∞,

then we expect that uniformly in Xi,
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!̂ + '̂
(
Vi – V̄

)
=E

(
Y – "D|Z = 0,Xi

)
+ oP(1) = E

(
t0i|Xi

)
+ oP(1)

!̂ +
(
'̂ + 6̂

) (
Vi – V̄

)
=E

(
Y – "D|Z = 1,Xi

)
+ oP(1) = E

(
t1i|Xi

)
+ oP(1).

Therefore 6̂
(
Vi – V̄

)
= E

(
t1i – t0i|Xi

)
+ oP(1), :̂i∞ = Zi

(
t1i – E

(
t1i|Xi

))
+

(1 – Zi)
(
t0i – E

(
t0i|Xi

))
,

:̄i∞ = (Zi – pz)
(
(1 – pz)

(
t1i – E

(
t1i|Xi

))
+ pz

(
t0i – E

(
t0i|Xi

)))
+ pz (1 – pz) (t1i – t0i) + oP(1),

which coincides with the semiparametric asymptotic influence function, and
includes the CI model as a special case when D = Z.

H Proof of Proposition 4

Recall that
√
n
(
"̂1 – "0

)
= Covn (Z,D)–1

√
nCovn (Z,Y – D"0). It can be shown that

Covn (Z,D) =
1
n

n∑
i=1

ZiDi –
1
n

n∑
i=1

Zi
1
n

n∑
i=1

Di

=p̂z
(
1 – p̂z

) [ 1
n
∑n

i=1 ZiD1i

p̂z
–

1
n
∑n

i=1 (1 – Zi)D0i

1 – p̂z

]
=pz (1 – pz)P (D1 > D0) + oP(1).

where the last line follows from Assumption 8.2. Furthermore,

Covn (Y, Z) =
1
n

n∑
i=1

ZiYi –
1
n

n∑
i=1

Zi
1
n

n∑
i=1

Yi = p̂z
(
1 – p̂z

)
[

1
n
∑n

i=1 ZiY∗
1i

p̂z
–

1
n
∑n

i=1 (1 – Zi)Y∗
0i

1 – p̂z

]

Next we consider

√
n (Covn (Y, Z) – Covn (D, Z) "0)

= p̂z
(
1 – p̂z

) 1√
n

n∑
i=1

[
Zit1i
p̂z

– (1 – Zi) t0i
1 – p̂z

]
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= p̂z
(
1 – p̂z

) 1√
n

n∑
i=1

(
Zit1i
p̂z

+
Zit0i
1 – p̂z

– (t1i – t0i) –
t0i

1 – p̂z

)

+ p̂z
(
1 – p̂z

) 1√
n

n∑
i=1

(t1i – t0i)

= p̂z
(
1 – p̂z

) 1√
n

n∑
i=1

(
Zi – p̂z

) ( t1i
p̂z

+
t0i

1 – p̂z

)
+ p̂z

(
1 – p̂z

) 1√
n

n∑
i=1

(t1i – t0i)

= pz (1 – pz)
1√
n

n∑
i=1

(Zi – pz)
(
t1i – E [t1i]

pz
+
t0i – E [t0i]
1 – pz

)

+ pz (1 – pz)
1√
n

n∑
i=1

(t1i – t0i) + Rn

where

Rn =
1√
n

n∑
i=1

{(
Zi – p̂z

) ((
pz – p̂z

)
(t1i – t0i) + ((1 – pz)E [t1i] + pzE [t0i])

)}
+

1√
n

n∑
i=1

(
pz – p̂z

)
((1 – pz) t1i + pzt0i – ((1 – pz)E [t1i] + pzE [t0i]))

+
[
p̂z
(
1 – p̂z

)
– pz (1 – pz)

] 1√
n

n∑
i=1

(t1i – t0i)

=
(
pz – p̂z

) 1√
n

n∑
i=1

(Zi – pz) (t1i – t0i) +
(
pz – p̂z

)2 1√
n

n∑
i=1

(t1i – t0i)

+
(
pz – p̂z

) 1√
n

n∑
i=1

((1 – pz) (t1i – E [t1i]) + pz (t0i – E [t0i]))

+
[
p̂z
(
1 – p̂z

)
– pz (1 – pz)

] 1√
n

n∑
i=1

(t1i – t0i)

Using Assumption 8, each term can be shown to be oP(1), so that Rn = oP(1).
From this point on the variance becomes different depending on whether S =

1 or S > 1. Recall that 9i =
[
t1i–Et1i
pz + t0i–Et0i

1–pz

]
and 9 (s) = E

[
9i|Xi ∈ s

]
. First note

that 1√
n
∑n

i=1 (t1i – t0i) is asymptotically orthogonal to 1√
n
∑n

i=1 (Zi – pz)9i under
assumptions 8.1 and 8.2.

Cov
[∑
s∈S

1√
n

n∑
i=1

1 (Xi ∈ s) (Zi – pz)9i,
∑
s∈S

1√
n

n∑
i=1

1 (Xi ∈ s) (t1i – t0i)

]
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=
∑
s∈S

1√
n

n∑
i=1

E [1 (Xi ∈ s) (Zi – pz)9i (t1i – t0i)]

=
∑
s∈S

1√
n

n∑
i=1

E [1 (Xi ∈ s) (E [Zi|Xi ∈ s,Y1i,Y0i,D1i,D0i] – pz)9i (t1i – t0i)]

=
∑
s∈S

1√
n

n∑
i=1

E [1 (Xi ∈ s) (E [Zi|Xi ∈ s] – pz)9i (t1i – t0i)]

= Oa.s.

(
1√
n

)

Then write the first part of the influence function as

1√
n

n∑
i=1

(Zi – pz)9i

=
1√
n

n∑
i=1

(Zi – pz) (9i – 9 (s)) +
1√
n

n∑
i=1

(Zi – pz)9 (s)

=
∑
s∈S

1√
n

n∑
i=1

1 (Xi ∈ s) (Zi – pz) (9i – 9 (s)) +
∑
s∈S

1√
n

n∑
i=1

1 (Xi ∈ s) (Zi – pz)9 (s) .

(25)

First note that the two sums are orthogonal:

Cov
[∑
s∈S

1√
n

n∑
i=1

1 (Xi ∈ s) (Zi– pz)
(
9i –9(s)

)
,
∑
s∈S

1√
n

n∑
i=1

1 (Xi ∈ s) (Zi – pz)9(s)
]

=
∑
s∈S

1√
n

n∑
i=1

Cov
[
1 (Xi ∈ s) (Zi – pz)

(
9i – 9(s)

)
, 1 (Xi ∈ s) (Zi – pz)9(s)

]
=
∑
s∈S

1√
n

n∑
i=1

E
[
1 (Xi ∈ s) (Zi – pz)2

(
9i – 9(s)

)
9(s)

]
=
∑
s∈S

1√
n

n∑
i=1

E
[
1 (Xi ∈ s) (Zi – pz)2 (9i – E [9i|Xi ∈ s, Zi])E [9i|Xi ∈ s, Zi]

]
=
∑
s∈S

1√
n

n∑
i=1

E
[
1 (Xi ∈ s) (Zi – pz)2 (9i – E [9i|Xi ∈ s])E [9i|Xi ∈ s]

]
= 0

We now use arguments similar to those in Lemma B.2 of BCS 2017a
to derive the limiting distribution of eq. (25). The distribution of U =
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1√
n
∑n

i=1 (Zi – pz) (9i – 9 (s)) is the same as the distribution of the same quant-
ity where the observations are first ordered by strata and then by Zi = 1 and
Zi = 0within strata. Let nz(s) be the number of observations in strata swhich have
Zi = z ∈ {0, 1}, and let p (s) = P (Xi ∈ s), N(s) =

∑n
i=1 I {Si < s}, and F(s) = P {Si < s}.

Independently for each s and independently of
(
Z(n), S(n)

)
, let

{
9s
i : 1 ≤ i ≤ n

}
be

i.i.d. with marginal distribution equal to the distribution of 9i|Xi ∈ s. Define

Ũ =
1√
n
∑
s∈S

⎛⎜⎜⎝
n
(
N(s)
n + n1(s)

n
)∑

i=n N(s)n +1

(
9s
i – 9 (s)

)
(1 – pz) +

n
(
N(s)
n + n(s)

n
)∑

i=n
(
N(s)
n + n1(s)

n
)
+1

(
9s
i – 9 (s)

)
(–pz)

⎞⎟⎟⎠
By construction,

{
U|S(n), Z(n)

} d=
{
Ũ|S(n), Z(n)

}
which implies U d= Ũ. Next define

U∗ =
1√
n
∑
s∈S

⎛⎜⎝�n(F(s)+p(s)pz)�∑
i=�nF(s)�+1

(
9s
i – 9 (s)

)
(1– pz)+

�n(F(s)+p(s))�∑
i=�n(F(s)+p(s)pz)�+1

(
9s
i –9 (s)

)
(–pz)

⎞⎟⎠
Using properties of Brownian motion,

1√
n

�n(F(s)+p(s)pz)�∑
i=�nF(s)�+1

(
9s
i – 9 (s)

)
(1 – pz)

d
→ N

(
0, p(s)pz (1 – pz)2 E

[(
9s
i – 9 (s)

)2])

1√
n

�n(F(s)+p(s))�∑
i=�n(F(s)+p(s)pz)�+1

(
9s
i – 9 (s)

)
(–pz)

d
→ N

(
0, p(s) (1 – pz) (pz)2 E

[(
9s
i – 9 (s)

)2])

Since the two sums are independent, 9s
i – 9 (s) are independent across i and s,

and E

[(
9s
i – 9 (s)

)2] = E
[
(9i – 9 (s))2

∣∣Xi ∈ s],
U∗ d
→ N

(
0, pz (1 – pz)

∑
s∈S

p(s)E
[
(9i – 9 (s))2

∣∣Xi ∈ s]
)

Furthermore, since
(
N(s)
n , n1(s)n

) p
→

(
F(s), pzp(s)

)
, by the continuous mapping

theorem,

Ũ – U∗ p
→ 0
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Therefore,

1√
n

n∑
i=1

(Zi – pz) (9i – 9 (s)) d
→ N

⎛⎜⎜⎜⎜⎜⎝0, pz (1 – pz)
∑
s∈S

p(s)E
[
(9i – 9 (s))2

∣∣Xi ∈ s]︸ ︷︷ ︸
K1

⎞⎟⎟⎟⎟⎟⎠
For the second term, it suffices to use Assumption 8.2 to show that

1√
n

n∑
i=1

(Zi– pz)9 (s)=
∑
s∈S

1√
n

n∑
i=1

1 (Xi ∈ s) (Zi– pz)9 (s) d
→ N

⎛⎜⎜⎜⎜⎜⎝0,
∑
s∈S

4(s)p(s)9 (s)2︸ ︷︷ ︸
K2

⎞⎟⎟⎟⎟⎟⎠

Lastly, note that 1√
n
∑n

i=1 (t1i – t0i)
d
→ N

⎛⎜⎝0,Var [t1i – t0i]︸ ︷︷ ︸
K3

⎞⎟⎠. Then√
n
(
"̂1 – "0

) d
�→

N
(
0,P (D1 > D0)–2 (K1 + K2 + K3)

)
.

As in Section 2, it is straightforward to show that the 2SLS robust variance is
consistent for P (D1 > D0)–2 times

plim
1
n

n∑
i=1

[(Zi – pz) [9i] + (t1i – t0i)]2

= plim
1
n

n∑
i=1

((Zi – pz)9i)2 + plim
1
n

n∑
i=1

(t1i – t0i)2

=plim
1
n

n∑
i=1

(Zi– pz)2 (9i– 9 (s))2+plim
1
n

n∑
i=1

(Zi– pz)2 9(s)2 +plim
1
n

n∑
i=1

(t1i– t0i)2

Independently for each s and independently of
(
Z(n), S(n)

)
, let

{
9s
i : 1 ≤ i ≤ n

}
be

i.i.d with marginal distribution equal to the distribution of9i|Xi ∈ s. Using similar
arguments as those in Lemma B.3 of BCS 2017a,

1
n

n∑
i=1

(Zi – pz)2 (9i – 9 (s))2

=
∑
s∈S

⎛⎝ 1
n

n1(s)∑
i=1

(1 – pz)2
(
9s
i – 9 (s)

)2 + 1
n

n0(s)∑
i=1

(–pz)2
(
9s
i – 9 (s)

)2⎞⎠
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=
∑
s∈S

⎛⎝n1(s)
n

1
n1(s)

n1(s)∑
i=1

(1– pz)2
(
9s
i – 9 (s)

)2+ n0(s)
n

1
n0(s)

n0(s)∑
i=1

(–pz)2
(
9s
i – 9 (s)

)2⎞⎠
p
→

∑
s∈S

{
pzp(s) (1 – pz)2 E

[(
9s
i – 9 (s)

)2] + (1 – pz) p(s) (–pz)2 E

[(
9s
i – 9 (s)

)2]}
= pz (1 – pz)

∑
s∈S

p(s)E
[
(9i – 9 (s))2

∣∣Xi ∈ s]
The key steps are to use the Almost Sure Representation theorem to construct
ñ1(s)
n

d= n1(s)
n such that ñ1(s)

n
a.s.
→ pzp(s) and then to note that by independence of(

Z(n), S(n)
)
and

{
9s
i : 1 ≤ i ≤ n

}
, for any : > 0,

P

⎧⎨⎩
∣∣∣∣∣∣ 1
n1(s)

n1(s)∑
i=1

(
9s
i – 9 (s)

)2 – E

[(
9s
i – 9 (s)

)2]∣∣∣∣∣∣ > :
⎫⎬⎭

= E

⎡⎢⎣P

⎧⎪⎨⎪⎩
∣∣∣∣∣∣∣

1
n ñ1(s)

n

n ñ1(s)n∑
i=1

(
9s
i – 9 (s)

)2 – E

[(
9s
i – 9 (s)

)2]∣∣∣∣∣∣∣ > :
∣∣∣∣∣∣∣
ñ1(s)
n

⎫⎪⎬⎪⎭
⎤⎥⎦

Also, note that by the weak law of large numbers, for any sequence nk → ∞ as
k →∞,

1
nk

nk∑
i=1

(
9s
i – 9 (s)

)2 p
→ E

[(
9s
i – 9 (s)

)2]

Since n ñ1(s)
n → ∞ almost surely, by independence of ñ1(s)

n and
{
9s
i : 1 ≤ i ≤ n

}
,

P

⎧⎪⎨⎪⎩
∣∣∣∣∣∣∣

1
n ñ1(s)

n

n ñ1(s)n∑
i=1

(
9s
i – 9 (s)

)2 – E

[(
9s
i – 9 (s)

)2]∣∣∣∣∣∣∣ > :
∣∣∣∣∣∣∣
ñ1(s)
n

⎫⎪⎬⎪⎭ a.s.
→ 0

Therefore, the first and third terms coincide with K1 and K3. The second term
converges to

plim
1
n

n∑
i=1

(Zi – pz)2 9(s)2 =
S∑
s=1

9 (s)2 p (s) pz (1 – pz)

This is larger than K2 as long as 4 (s) ≤ pz (1 – pz) for all s ∈ S, and strictly so for
some s ∈ S.
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I Proof of Proposition 5

The sample normal equations for this regression are given by

4n
(
"̂2, '̂

)
=
1
n

n∑
i=1

[
1 (Xi ∈ s)s∈S
(Zi – pz)

](
Yi – "̂2Di –

S∑
s=1

'̂s1 (Xi ∈ s)
)
= 0.

We can write
(
"̂2 – "0, '̂ – '0

)
= Â–14n ("0, '0) if we let '0 = ('0s, s ∈ S), t1 (s) =

E
(
t1i|Xi ∈ s

)
, t0 (s) = E

(
t0i|Xi ∈ s

)
,

'0s =E
(
Y |s

)
– E

(
D|s

)
"0 = pzt1 (s) + (1 – pz) t0 (s)

= (1 – pz) t1 (s) + pzt0 (s) – (1 – 2pz) [t1 (s) – t0 (s)] .

and

Â =
1
n

n∑
i=1

[
1 (Xi ∈ s)s∈S Di diag (1 (Xi ∈ s)s∈S )
(Zi – pz)Di (Zi – pz) 1 (Xi ∈ s)′s∈S .

]

Using Assumption 8.1 and 8.2 we can show that Â = A + oP(1), where

A =
[

p (s)E
(
D|s

)
diag (p (s) , s ∈ S)

pz (1 – pz)P (D1 > D0) 0

]

In the followingwewill show that 4n ("0, '0) = Op
(

1√
n

)
, which by non-singularity

of A implies that
(
"̂2 – "0, '̂ – '0

)
= OP

(
1√
n

)
. Then the second row of the relation

(
A + oP(1)

) (
"̂2 – "0, '̂ – '0

)
′

= 4n ("0, '0)

implies that, using the above '0s,

P (D1 > D0)
√
n
(
"̂2 – "0

)
=

1√
n

n∑
i=1

(Zi – pz)
pz (1 – pz)

(
Yi– "0Di –

S∑
s=1

'0s1 (Xi ∈ s)
)
+ oP(1)
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=
1√
n

n∑
i=1

[
(Zi – pz)

(
t1i – Et1i

pz
+
t0i – Et0i
1 – pz

–
∑
s∈S

(
E
(
t1i – Et1i|Xi ∈ s

)
pz

+
E
(
t0i – Et0i|Xi ∈ s

)
1 – pz

–
1 – 2pz

pz (1 – pz)
[t1 (s) – t0 (s)]

)
1 (Xi ∈ s)

)
+ (t1i – t0i)

]
+ oP(1)

=
∑
s∈S

1√
n

n∑
i=1

1 (Xi ∈ s) (Zi – pz) (9i – 9 (s)) +
∑
s∈S

1√
n

n∑
i=1

1 (Xi ∈ s)

(Zi – pz)
1 – 2pz

pz (1 – pz)
(t1 (s) – t0 (s)) +

1√
n

n∑
i=1

(t1i – t0i) + oP(1).

where we recall that 9i = t1i–Et1i
pz + t0i–Et0i

1–pz and 9 (s) = E
[
9i|Xi ∈ s

]
. Using similar

arguments to those in proposition 4,

∑
s∈S

1√
n

n∑
i=1

1 (Xi ∈ s) (Zi – pz) (9i – 9 (s))

d
→ N

⎛⎜⎜⎜⎜⎜⎝0, pz (1 – pz)
∑
s∈S

p(s)E
[
(9i – 9 (s))2

∣∣Xi ∈ s]︸ ︷︷ ︸
K1

⎞⎟⎟⎟⎟⎟⎠
∑
s∈S

1√
n

n∑
i=1

1 (Xi ∈ s) (Zi – pz)
1 – 2pz

pz (1 – pz)
(t1 (s) – t0 (s))

d
→ N

⎛⎜⎜⎜⎜⎜⎝0,
∑
s∈S

p(s)4(s)
(

1 – 2pz
pz (1 – pz)

(t1 (s) – t0 (s))
)2

︸ ︷︷ ︸
K̄2

⎞⎟⎟⎟⎟⎟⎠
1√
n

n∑
i=1

(t1i – t0i)
d
→ N

⎛⎜⎝0,Var [t1i – t0i]︸ ︷︷ ︸
K3

⎞⎟⎠
Note that the first two sums in the influence function are orthogonal:

Cov
[∑
s∈S

1√
n

n∑
i=1

1 (Xi ∈ s) (Zi – pz) (9i – 9 (s)) ,
∑
s∈S

1√
n

n∑
i=1

1 (Xi ∈ s)
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(Zi – pz)
1 – 2pz

pz (1 – pz)
(t1 (s) – t0 (s))

]
=
∑
s∈S

1√
n

n∑
i=1

E

[
1 (Xi ∈ s)(Zi– pz)2 (9i– 9 (s))

1 – 2pz
pz (1 – pz)

(t1 (s)–t0 (s))
]

=
∑
s∈S

1√
n

n∑
i=1

E

[
1 (Xi ∈ s) (Zi–pz)2

1 – 2pz
pz (1 – pz)

(E [ (9i–9 (s)) (t1 (s)–t0 (s))|Xi ∈s, Zi])
]

=
∑
s∈S

1√
n

n∑
i=1

E

[
1 (Xi ∈ s) (Zi – pz)2 (9i– E [9i|Xi ∈ s]) 1 – 2pz

pz (1 – pz)
(t1 (s)– t0 (s))

]
=0

And the third sum is orthogonal to the first two sums by the same arguments
in proposition 4. Therefore, P (D1 > D0)

√
n
(
"̂2 – "0

) d
�→ N

(
0,K1 + K̄2 + K3

)
. It

is also easy to show using similar arguments to those in proposition 4 that the
2SLS nominal variance consistently estimates P (D1 > D0)–2 times

plim
1
n

n∑
i=1

[
(Zi – pz)
pz (1 – pz)

(
Yi – "0Di –

S∑
s=1

'0s1 (Xi ∈ s)
)]2

= plim
∑
s∈S

1
n

n∑
i=1

1 (Xi ∈ s) (Zi – pz) (9i – 9 (s))2

+ plim
∑
s∈S

1
n

n∑
i=1

1 (Xi ∈ s) (Zi – pz)
(

1 – 2pz
pz (1 – pz)

)2
(t1 (s) – t0 (s))2

+ plim
1
n

n∑
i=1

(t1i – t0i)2

= K1 + K̃2 + K3

where

K̃2 =
∑
s∈S

p (s) pz (1 – pz)
(

1 – 2pz
pz (1 – pz)

(t1 (s) – t0 (s))
)2

which is larger than K̄2 if pz (1 – pz) > 4 (s) for some s, unless S = 1 or pz = 1
2 .

J Proof of Proposition 6

We choose to work with the representation in eq. (11), using which we write
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√
n
(
"̂3 – "0

)
=

√
n

∑S
s=1

(
.̂1s – .̂0s – "0

(
&̂1s – &̂0s

)) ∑n
i=1 1(Xi∈s)

n∑S
s=1

(
&̂1s – &̂0s

) ∑n
i=1 1(Xi∈s)

n

(26)

For the denominator, under Assumption 8, Lemma B.3 of BCS 2017a implies that

&̂1s =
1
n
∑n

i=1 1 (Xi ∈ s) ZiDi
1
n
∑n

i=1 1 (Xi ∈ s) Zi
p
�→ P

(
D1 = 1|s

)
,

&̂0s =
1
n
∑n

i=1 1 (Xi ∈ s) (1 – Zi)Di
1
n
∑n

i=1 1 (Xi ∈ s) (1 – Zi)
p
�→ P

(
D0 = 1|s

)
.

Together with 1
n
∑n

i=1 1 (xi ∈ s)
p
�→ p (s) ≡ p (xi ∈ s),

S∑
s=1

(
&̂1s – &̂0s

) ∑n
i=1 1 (Xi ∈ s)

n
p
�→ P (D1 = 1) – P (D0 = 1) = P (D1 > D0) .

Using p̂ (s) = 1
n
∑n

i=1 1 (Xi ∈ s), p̂ (s) p̂z (s) = 1
n
∑n

=1 1 (Xi ∈ s) Zi, t1 (s) = E
[
t1i|Xi ∈ s

]
,

and t0 (s) = E
[
t0i|Xi ∈ s

]
S∑
s=1

(
.̂1s – .̂0s – "0

(
&̂1s – &̂0s

)) ∑n
i=1 1 (Xi ∈ s)

n

=
S∑
s=1

p̂ (s)

[
1
n
∑n

i=1 t1i1 (Xi ∈ s) Zi
p̂ (s) p̂z

–
1
n
∑n

i=1 t0i1 (Xi ∈ s) (1 – Zi)
p̂ (s)

(
1 – p̂z

) ]

=
S∑
s=1

1
n

n∑
i=1

1 (Xi ∈ s)

[
(t1i – t1 (s)) Zi

p̂z
– (t0i – t0 (s)) (1 – Zi)(

1 – p̂z
) ]

+
S∑
s=1

1
n

n∑
i=1

1 (Xi ∈ s) (t1 (s) – t0 (s))

=
S∑
s=1

1
n

n∑
i=1

1 (Xi ∈ s)
[
(t1i – t1 (s)) Zi

pz
– (t0i – t0 (s)) (1 – Zi)

(1 – pz)

]
+
∑
s∈S

(R1ns + R2ns)

+
S∑
s=1

1
n

n∑
i=1

1 (Xi ∈ s) (t1 (s) – t0 (s))
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=
S∑
s=1

1
n

n∑
i=1

1 (Xi ∈ s) (Zi – pz)
[
t1i – t1 (s)

pz
+
t0i – t0 (s)
1 – pz

]
+
∑
s∈S

(R1ns + R2ns)

+
1
n

n∑
i=1

(t1i – t0i) (27)

In the above

R1ns =
pz – p̂z

p̂z
(
1 – p̂z

) 1
n

n∑
i=1

1 (Xi ∈ s) [(t1i – t1 (s)) Zi + (t0i – t0 (s)) (1 – Zi))

R2ns =
(

1
p̂z
(
1 – p̂z

) – 1
pz (1 – pz)

)
×

1
n

n∑
i=1

1 (Xi ∈ s) [(1 – pz) (t1i – t1 (s)) Zi – pz (t0i – t0 (s)) (1 – Zi)] .

Rewriting,

R1ns =
pz – p̂z

p̂z
(
1 – p̂z

) { 1
n

n∑
i=1

1 (Xi ∈ s) (Zi – pz) [(t1i – t1 (s)) – (t0i – t0 (s))]

+ pz
1
n

n∑
i=1

1 (Xi ∈ s) (t1i – t1 (s)) + (1 – pz)
1
n

n∑
i=1

1 (Xi ∈ s) (t0i – t0 (s))

}

R2ns=
(

1
p̂z
(
1 – p̂z

) – 1
pz (1 – pz)

){
1
n

n∑
i=1

1(Xi ∈ s) (Zi – pz) [(t1i – t1 (s)) + (t0i – t0 (s))]

+pz
1
n

n∑
i=1

(1 – Zi) 1 (Xi ∈ s) (t1i – t1 (s)) – (1 – pz)
1
n

n∑
i=1

Zi1 (Xi ∈ s) (t0i – t0 (s))

}

=
(

1
p̂z
(
1– p̂z

) – 1
pz (1 – pz)

){
1
n

n∑
i=1

1 (Xi ∈ s) (Zi– pz) [(t1i– t1 (s)) + (t0i – t0 (s))]

+ pz
1
n

n∑
i=1

(1 – Zi– (1–pz)) 1 (Xi ∈ s) (t1i–t1 (s))

– (1 – pz)
1
n

n∑
i=1

(Zi – pz) 1 (Xi ∈ s) (t0i–t0 (s))

+pz (1 – pz)
1
n

n∑
i=1

1 (Xi ∈ s) (t1i– t1 (s))–(1 – pz) pz
1
n

n∑
i=1

1 (Xi ∈ s) (t0i– t0 (s))

}
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Using Assumption 8, Lemmas B.2 and B.3 of BCS 2017a, and arguments similar
to those in propositions 4 and 5, we can show that

∑
s∈S R1ns = oP(1)OP

(
1√
n

)
=

oP
(

1√
n

)
and

∑
s∈S R2ns = oP(1)OP

(
1√
n

)
= oP

(
1√
n

)
.

Since t1i–t1(s)
pz + t0i–t0(s)

1–pz = t1i–Et1i
pz + t0i–Et0i

1–pz –
(
t1(s)–Et1i

pz + t0(s)–Et0i
1–pz

)
= 9i – 9 (s)

eq. (27) can be written as

S∑
s=1

1√
n

n∑
i=1

1 (Xi ∈ s) (Zi – pz) [9i – 9 (s)] +
1√
n

n∑
i=1

(t1i – t0i) + oP(1) (28)

The first part of this influence function corresponds exactly to the first term in
eq. (25). Therefore regardless of pz there is no need to worry about the variation
induced by the sampling scheme for Zi within the cluster.

In the special case of unconfoundedness, eq. (28) becomes

S∑
s=1

1√
n

n∑
i=1

1 (Xi ∈ s) (Zi – pz)
[
Y1i
pz

+
Y0i

1 – pz
– E

[
Y1i
pz

+
Y0i

1 – pz

∣∣∣∣Xi ∈ s]]

+
1√
n

n∑
i=1

(Y1i – Y0i) – (,1 – ,0) + oP(1),
(29)

Using Assumption 8, 3̂23 is consistent for the plim of P (D1 > D0)–2 times 1
n
∑n

i=1 82
i

where

8i = (Zi – pz)
((

t1i – t̄1
pz

+
t0i – t̄0
1 – pz

– Gn,X, t1pz +
t0

1–pz
G–1n,X

(
Xi – X̄

)))
+ pz (1 – pz)

(
t1i – t0i – t̄1 + t̄0 – Gn,X,t1–t0G–1n,X

(
Xi – X̄

))
= (Zi – pz)

((
9i – 9̄ – Gn,X,9G–1n,X

(
Xi – X̄

)))
+ pz (1 – pz)

(
t1i – t0i – t̄1 + t̄0 – Gn,X,t1–t0G–1n,X

(
Xi – X̄

))
for Gn,X = 1

n
∑n

i=1

(
Xi – X̄

) (
Xi – X̄

)
′

and Gn,X,t = 1
n
∑n

i=1

(
Xi – X̄

) (
ti – t̄

)
. With

Xi being the cluster dummies, 9i – 9̄ – Gn,X,9G–1n,X
(
Xi – X̄

)
is the residual

from a saturated regression of 9i on the cluster dummies, and converges to∑
s∈S 1 (xi ∈ s) (9i – 9 (s)). For the same reason, t1i–t0i–t̄1+t̄0–Gn,X,t1–t0G–1n,X

(
Xi – X̄

)
is the residual from a saturated regression of t1i – t0i on the cluster dummies, and
converges to ∑

s∈S
1 (xi ∈ s)

(
t1i – t0i – E

(
t1i – t0i|s

))
.
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Therefore 1
n
∑n

i=1 82
i is in turn consistent for the variance of

S∑
s=1

1√
n

n∑
i=1

1 (Xi ∈ s) (Zi – pz) [9i – 9 (s)] +
1√
n

n∑
i=1

∑
s∈S

1 (xi ∈ s)(
t1i – t0i – E

(
t1i – t0i|s

))
,

which is asymptotically smaller than the variance of eq. (28) but larger than the
variance of its first component. Next we will need to add a consistent estimate of

1
n

n∑
i=1

∑
s∈S

1 (xi ∈ s)E
(
t1i – t0i|s

)2 .
This is obtained by 6̂′ 1n

∑n
i=1

(
Vi – V̄

) (
Vi – V̄

)
′

6̂, which is the variance of the
fitted value of the saturated cluster dummy regression. We can then use 3̄23 in
Corollary 3 to obtain a consistent estimate of the variance of eq. (28).

We can also directly estimate the variance of "̂3 by estimating the first repres-
entation of the influence function in eq. (27). Let t̂1iZi =

(
Yi – Di"̂3

)
Zi, t̂0i (1 – Zi) =(

Yi – Di"̂3
)
(1 – Zi),

t̂1 (s) =
n∑
i=1

t̂1iZi1 (Xi ∈ s) /
n∑
i=1

Zi1 (Xi ∈ s)

t̂0 (s) =
n∑
i=1

t̂0i (1 – Zi) 1 (Xi ∈ s) /
n∑
i=1

(1 – Zi) 1 (Xi ∈ s)

and construct

K̂ =
1
n

n∑
i=1

⎛⎝∑
s∈S

1 (Xi ∈ s)

⎡⎣
(
t̂1iZi – t̂1 (s) Zi

)
p̂z

–

(
t̂0i (1 – Zi) – t̂0 (s) (1 – Zi)

)
(
1 – p̂z

)
⎤⎦⎞⎠2

+
1
n

n∑
i=1

[ S∑
s=1

1 (Xi ∈ s)
(
t̂1 (s) – t̂0 (s)

)]2

Lemma B.3 of BCS 2017a and the continuous mapping theorem imply that
t̂1 (s)

p
�→ t1 (s) and t̂0 (s)

p
�→ t0 (s). Slutsky’s theorem then implies that K̂

consistently estimates the variance of eq. (27).
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K Proof of Proposition 7

This estimator can be implemented using OLS and 2SLS by fully interacting Zi,
the cluster dummies, and the additional regressors Xi. To simplify notation we
denote Wi = (1 Xi) and the regression functions in eq. (12) as γ̂ ′0sWi, γ̂ ′1sWi, 4̂′0sWi
and 4̂′1sWi. Consider first the OLS case under Assumption 5.

"̂S =
∑
s∈S

p̂ (s) W̄s (γ̂1s – γ̂0s)

where W̄s = 1
n
∑n

i=1 1 (Xi ∈ s)Wi/p̂ (s), γ̂0s
p
�→ γ0s =

(
E
(
WW ′|s

))–1 (E (WY0|s
))
, and

γ̂1s
p
�→ γ1s =

(
E
(
WW ′|s

))–1 (E (WY1|s
))
, for

γ̂1s = H–1
1n

(
1
n

n∑
i=1

1 (Xi ∈ s) ZiWiYi

)
and H1n =

(
1
n

n∑
i=1

1 (Xi ∈ s) ZiWiW ′i

)
. (30)

γ̂0s=H–1
0n

(
1
n

n∑
i=1

1 (Xi ∈ s)(1 – Zi)WiYi

)
and H0n=

(
1
n

n∑
i=1

1 (Xi ∈s)(1– Zi)WiW ′i

)
.

(31)

In the normal equations EW
(
Yj –W ′γjs|s

)
= 0 for j = 0, 1, and W includes the

constant term. Therefore E
(
Yj –W ′γjs|s

)
= 0 for j = 0, 1, so that "̂S

p
�→ "0 = B =

E (Y1 – Y0). In the following, we will not require pz (s) ≡ pz. Note that

"̂S – "0 =
∑
s∈S

p̂ (s) W̄s [γ̂1s – γ1s – γ̂0s + γ0s]︸ ︷︷ ︸
(1)

+
∑
s∈S

p̂ (s) W̄s (γ1s – γ0s) – B︸ ︷︷ ︸
(2)

,

where we can write (1) as

∑
s∈S

p̂ (s) W̄s

[
H–1
1n
1
n

n∑
i=1

1 (Xi ∈ s)WiZi
(
Y1i –W ′i γ1s

)
–H–1

0n
1
n

n∑
i=1

1 (Xi ∈ s)Wi (1 – Zi)
(
Y0i –W ′i γ0s

)]
.

Using p̂ (s)
p
→ p (s), W̄s

p
→ E

(
W |s

)
, E

(
W ′|s

)
E
(
WW ′|s

)–1 = (1, 0, ...),

H1n
p
→ p (s) pz (s)E

(
WW ′|s

)
, H0n

p
→ p (s) (1 – pz (s))E

(
WW ′|s

)
,
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1
n

n∑
i=1

1 (Xi ∈ s)WiZi
(
Y1i –W ′i γ1s

)
= OP

(
1√
n

)
,

1
n

n∑
i=1

1 (Xi ∈ s)Wi (1 – Zi)
(
Y0i –W ′i γ0s

)
= OP

(
1√
n

)
,

we can write eq. (1) as

∑
s∈S

E
(
W |s

)
E
(
WW ′|s

)–1 1
n

n∑
i=1

1 (Xi ∈ s)Wi

(
Zi
Y1i –W ′i γ1s

pz (s)
– (1 – Zi)

Y0i –W ′i γ0s
1 – pz (s)

)

+ oP
(

1√
n

)
=
∑
s∈S

1
n

n∑
i=1

1 (Xi ∈ s)
[
(Zi – pz (s))

(Y1i –W ′i γ1s
pz (s)

+
Y0i –W ′i γ0s
1 – pz (s)

)

+
[
Y1i – Y0i –W ′i (γ1s – γ0s)

]]
+ oP

(
1√
n

)
Therefore,

(1) + (2) =
∑
s∈S

1
n

n∑
i=1

1 (Xi ∈ s) (Zi – pz (s))
(Y1i –W ′i γ1s

pz (s)
+
Y0i –W ′i γ0s
1 – pz (s)

)

+
1
n

n∑
i=1

(Y1i – Y0i – B) + oP
(

1√
n

)

This obviously is more efficient than eq. (29) since W ′i γjs, j = 0, 1 is the linear
projection of Yij – E

(
Yij|s

)
within cluster s, and results in a smaller variance.

Next we generalize the above to LATE. Consider

"̂S =
∑

s∈S p̂ (s) W̄s (γ̂1s – γ̂0s)∑
s∈S p̂ (s) W̄s

(
4̂1s – 4̂0s

)
so that for "0 = E

(
Y1 – Y0|D1 > D0

)
,

"̂S – "0 =
∑

s∈S p̂ (s) W̄s
(
γ̂1s – γ̂0s –

(
4̂1s – 4̂0s

)
′ "0

)
∑

s∈S p̂ (s) W̄s
(
4̂1s – 4̂0s

)
Since the denominator is E (D1 – D0) + oP(1) = P (D1 > D0) + oP(1), we focus on the
numerator, and write(

P (D1 > D0) + oP(1)
) (

"̂S – "0
)
=
∑
s∈S

p̂ (s) W̄s
(
γ̂1s – γ̂0s –

(
4̂1s – 4̂0s

)
′ "0

)
.

γ1s and γ0s are defined by
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γ̂1s = H–1
1n

(
1
n

n∑
i=1

1 (Xi ∈ s) ZiWiYi

)
p
�→ γ1s =

(
E
(
WW ′|s

))–1 (E (WY∗
1 |s
))

γ̂0s = H–1
0n

(
1
n

n∑
i=1

1 (Xi ∈ s) (1 – Zi)WiYi

)
p
�→ γ0s =

(
E
(
WW ′|s

))–1 (E (WY∗
0|s
))
,

and 41s and 40s are analogously defined by

4̂1s = H–1
1n

(
1
n

n∑
i=1

1 (Xi ∈ s) ZiWiDi

)
p
→ 41s =

(
E
(
WW ′|s

))–1 (E (WD1|s
))

4̂0s = H–1
0n

(
1
n

n∑
i=1

1 (Xi ∈ s) (1 – Zi)WiDi

)
p
→ 40s =

(
E
(
WW ′|s

))–1 (E (WD0|s
))
.

Define '̂js = γ̂js – 4̂′js"0 for j = 0, 1, so that '̂js
p
�→ 'js = E

(
WW ′|s

)–1 E (Wtj|s
)
, where

'̂1s =
(
1
n

n∑
i=1

1 (Xi ∈ s) ZiWiW ′i

)–1
⎛⎜⎝ 1
n

n∑
i=1

1 (Xi ∈ s) ZiWi
(
Y∗
1i – D

′

1i"0
)︸ ︷︷ ︸

t1i

⎞⎟⎠

'̂0s =
(
1
n

n∑
i=1

1 (Xi ∈ s) (1 – Zi)WiW ′i

)–1
⎛⎜⎝ 1
n

n∑
i=1

1 (Xi ∈ s) (1 – Zi)Wi
(
Y∗
0i – D

′

0i"0
)︸ ︷︷ ︸

t0i

⎞⎟⎠
Then we proceed similar as the ATE case to write the numerator as∑

s∈S
p̂ (s) W̄s

[
'̂1s – '1s – '̂0s + '0s

]
︸ ︷︷ ︸

(1)

+
∑
s∈S

p̂ (s) W̄s ('1s – '0s)︸ ︷︷ ︸
(2)

,

where by noting that

1
n

n∑
i=1

1 (Xi ∈ s)WiZi
(
t1i –W ′i '1s

)
= OP

(
1√
n

)
,

1
n

n∑
i=1

1 (Xi ∈ s)Wi (1 – Zi)
(
t0i –W ′i '0s

)
= OP

(
1√
n

)
,

we can write (1) as
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∑
s∈S

E
(
W |s

)
E
(
WW ′|s

)–1 1
n

n∑
i=1

1 (Xi ∈ s)Wi

(
Zi
t1i –W ′i '1s
pz (s)

– (1 – Zi)
t0i –W ′i '0s
1 – pz (s)

)
+ oP

(
1√
n

)
=
∑
s∈S

1
n

n∑
i=1

1 (Xi ∈ s)
[
(Zi – pz (s))

( t1i –W ′i '1s
pz (s)

+
t0i –W ′i '0s
1 – pz (s)

)

+
[
t1i – t0i –W ′i ('1s – '0s)

]]
+ oP

(
1√
n

)
Therefore,

(1) + (2) =
∑
s∈S

1
n

n∑
i=1

1 (Xi ∈ s) (Zi – pz (s))
( t1i –W ′i '1s

pz (s)
+
t0i –W ′i '0s
1 – pz (s)

)

+
1
n

n∑
i=1

(t1i – t0i) + oP
(

1√
n

) (32)

Again this ought to be more efficient than eq. (27) sinceW ′i 'js is the within cluster
linear projection of tji – tj (s). The more variables the projection is on, the smaller
the variance. As dim (W) →∞ at an appropriate rate,W ′i 'js → E

(
tji|Wi

)
for j = 0, 1,

so that the above equation becomes the efficient influence function in eq. (24)
conditional on both the cluster indicators and the extra regressors.
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