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Summary

This paper adds to the issue of inference regarding potentially nonstationary panels where units
are correlated. Recently, it has been proposed to tackle this problem by computing individual
p-values and combining them to an overall joint significance. We adopt and illustrate this fairly
general approach allowing for competingmeans to account for cross-correlationwhen analyzing
samples of N = 10 international interest rate differentials of different maturities.
Alternatively, we investigate the approach of multiple testing or multiple comparison that has
rarely been employed in econometrics. The advantages are that the computation of p-values
is not necessarily required, and that one may identify for which specific unit a null hypothesis
of interest may be considered as violated while controlling the overall significance level of the
multiple testing problem. This comes at the price of an increased computational burden.

1 Introduction

Within the last years, a number of problematic issues inherent in panel (unit root) testing
techniques have been addressed in order to render their application more suitable for
(macro-)econometric studies. Approaching the difficulty not to account for correlation
across the units of the so-called first generation of panel unit root tests (cf. Levin et al.
2002; Im et al. 2003, for example), the second generation of tests featuring a variety of
procedures (cf. Breitung/Das 2005; Moon/Perron 2004; Pesaran 2007, for example) has
established itself in the panel unit root literature. What is more, modern panel techniques
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have become considerably more flexible with regard to individual specifics, e.g. they allow
for a different lag length for each unit in the panel as well as for the estimation of cross-
section specific slope parameters and intercepts. One example of these approaches is the
transformation and combination of individual significance levels (p-values) to a joint test
statistic. While these procedures are based on conducting individual-specific tests and
hence can also be applied to unbalanced panels, they do not permit to make inference on
the separate cross-section units. Hence, the user is still left in the dark about how many
units and exactly which units can be assumed stationary when the joint unit root null is
rejected.

A remedy to this issue is provided by so-called multiple testing procedures (MTP) that
trace back to the Bonferroni method and the procedure by Holm (1979). Adjusting the
overall significance level so as to account for the connectedness of the units in a panel,
these methods do not only conduct separate tests but they also consider individual null
hypotheses using each single p-value or test statistic without merging them into a joint
test statistic. Thus, going beyond the ‘skills’ of p-value combination approaches, multiple
testing procedures open up the possibility of making inference on the individual units in
the panel without being at the risk of falsely rejecting true null hypotheses as one would be
if conducting tests on the single times series without adequately adjusting the significance
level. In particular, the joint resampling-based methods by Romano and Wolf (2005) and
by Romano et al. (2008) do not even require the computation of p-values which makes
them especially attractive when working with nonstandard distributions.

Within both approaches, some of the procedures are able to account for cross-correlation
without further modification. In order to offer type I error control, they require, however,
that particular (often worst case) assumptions on the dependence structure are fulfilled
which often makes them conservative. Hence, it is also plausible that, generally, type I
error control is not ensured for any dependence structure.

Other procedures necessitate a resampling approach in order to approximate the cross-
sectional dependence structure. These methods are thus computationally more demanding
but usually also more powerful than the former. The resampling approach needs to be
chosen such that it matches the nature of the data, e.g. the dependence structure of the
test statistics has to be preserved, nonstationarity has to be accounted for and so on.

As an empirical example, both types of testing procedures are employed for examining
international interest rate linkage. As a necessary condition for the Uncovered Interest
Parity to hold, the stability (or stationarity) of interest rate differentials has been an object
of empirical research for quite some time. Due to the world-wide integration of macro-
social forces such as economics and politics, it is also plausible to assume some kind of
correlation between the countries. Hence, p-value combination procedures as described
above qualify for conducting a meaningful analysis of whether the panel of interest rate
differentials can be considered stationary. Multiple testing methods provide additional
information on for how many and for which countries the interest rates can be deemed
connected. The study reveals that, unsurprisingly, controlling for multiplicity can make
a huge difference with respect to the number of null hypotheses rejected as spurious
rejections are avoided.

For the procedures relying on resampling procedures, we employ a sieve bootstrap
approach which, on the one hand conserves the dependence structure of the test statistics
and on the other hand facilitates to account for nonstationarity of the data under the
null.
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We use interest rate data on 11 OECD countries including the US and Germany as ‘Euro-
zone’ representative in a time range from 1990.01 until 2012.10. Whereas a connection
between US and OECD rates seems virtually nonexistent, fairly conclusive evidence in
favor of the linkage to the Eurozone is found.
The structure of the paper is as follows. In the next section, the testing approaches used
are introduced. In Section 3 some previous evidence on the connection of international
interest rates is briefly reviewed and the empirical study is presented. Section 4 offers
some conclusions.

2 Testing procedures

The tests for nonstationarity applied in this paper fall into two categories:1 On the one
hand, we discuss two procedures that (transform and) combine p-values obtained from
individual test statistics to a joint test statistic. Such methods go back to the work by
Fisher (1954) who is the first to suggest the transformation and combination of p-values
pi via the joint test statistic F = −2

∑N
i=1 ln(pi) that follows a χ2(2N) under H0 if the

units are cross-sectionally independent. Fisher’s method is introduced into the panel liter-
ature by Maddala and Wu (1999) under independence; furthermore, they provide Monte
Carlo evidence that a bootstrap version of the procedure works well in cross-correlated
panels. Also Hanck (2009a) conducts a simulation study involving a bootstrap technique2

which corroborates the findings byMaddala andWu (1999) and adds results on the test’s
behavior under various scenarios. In Section 2.1, we discuss two more p-value combining
techniques.
On the other hand, three multiple testing procedures are covered. Such procedures are
more informative (and thus more useful for the empirical study at hand) than the p-
value combinations as they allow for inference about each individual unit. Up to now,
these methods have mostly been ignored in econometric applications which may be due to
their reputation of being less powerful than so-called per comparison procedures that test
each null individually at level α. However, the latter rather intuitive approach neglects the
multiplicity of the testing problem which leads to an inflated number of false rejections of
the individual unit root null hypotheses. In order to provide an illustration of this problem,
we use the following textbook example:3 Consider a panel of interest rate differentials
of, for instance, N = 10 countries which are independent. Note that the independence
assumption is only made to simplify the following computations. The unit root null is
supposed to be true for each of the cross-section units. As 1/10 = 0.1 = 10%, one might
think that, when testing each country separately, the probability of falsely rejecting at
most one of the 10 nulls at α = 0.1 is also 10%. Yet, from a statistical point of view, this
reasoning is faulty as the event of a false rejection is a Bernoulli random variable with

1 For a review on recent nonstationary panel techniques the reader is referred to Breitung and Pesaran
(2008) or Kirchgässner et al. (2013: Ch. 7).

2 In contrast to Maddala and Wu (1999) who apply Fisher’s test to test for panel unit roots, Hanck
(2009a) extends its use to panel cointegration.

3 Cf. for example Kirchgässner et al. (2013: 257).
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probability of success equal to 0.1. As a sum ofN Bernoulli random variable is binomially
distributed, the probability of at least one false rejection (or discovery) amounts to

Pr
{
V ≥ 1

} =
10∑
j=1

(
10
j

)
0.1j(1 − 0.1)10−j = 0.6513 , (2.1)

where V denotes the number of false rejections which is an unobserved random variable.
Thus, when testing for interest rate linkage in the example panel, with probability 65.13%
one tends to erroneously find evidence in favor of it. Obviously, adding more cross-
sections to the panel even compounds this issue.
To eliminate this so-called ‘multiplicity effect’, testing procedures are called for that con-
trol the type I error rate for each individual hypothesis test at a pre-specified significance
level. There exist several concepts of type I error control, two of which will be introduced
in the following.
The probability of making at least one false discovery is called the familywise error rate
(FWER). In the multiple testing methodology, one talks about controlling or protecting
the FWER at significance level α when one ensures Pr{V ≥ 1} ≤ α. However, holding
down the number of false discoveries comes at the cost of a reduced ability to detect false
nulls which has compromised the appeal of these techniques. If the number of individual
null hypotheses (i.e. the number of cross-section units) is large, though, one might be
willing to tolerate a larger rate of false rejections which, in turn, enhances the power of
the multiple testing techniques. Also, the more rejections occur, the less relevant is the
portion of false discoveries among them. Hence, Benjamini and Hochberg (1995) propose
to control the false discovery rate (FDR):

FDR = E
[
Q
]

with Q =
{
V/R if R > 0
0 if R = 0

, (2.2)

whereR is the (observable) total number of rejections. Control of the FDR at α is achieved
if FDR ≤ α. Another advantage of FDR control is that error rates using the proportion of
false discoveries among all rejections stay stable with increasing N; obviously, this is not
the case for error rates considering the absolute number of false discoveries like the FWER
(Dudoit/van der Laan 2007: 145). Yet, it should be made clear that procedures controlling
the FDR bound merely the average value of the proportion of false positives denoted by
Q in (2.2). Hence, controlling the FDR causes difficulties for the interpretation ofQ if the
convergence rate of the proportion of false positives to the FDR is rather slow (Roquain
2011). For example, Romano andWolf (2007) suggest a procedure controlling the upper-
tail distribution of Q for a pre-specified proportion of false discoveries within the set
of rejected null hypotheses. However, Roquain (2011) also remarks that FDR control
remains applicable as it is a ‘‘simpler criterion for which the controlling methodology is
(for now) much more developed’’ (Roquain 2011: 32).
Classical FWER controlling techniques are the Bonferroni method and the procedure
by Holm (1979) both of which belong to the class of so-called marginal multiple testing
procedures. This means they solely consider the marginal distributions of the test statistics
and are thus considerably more conservative than procedures taking into account their
true dependence structure (joint multiple testing procedures).4 In Section 2.2, we review

4 Cf. Dudoit and van der Laan (2007).
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the FWER controlling marginal MTP by Hommel (1988), the FWER controlling joint
bootstrap-based MTP by Romano and Wolf (2005) as well as the FDR controlling joint
bootstrap-based MTP by Romano et al. (2008). The FDR controlling joint resampling-
based MTP has also been applied by Deckers and Hanck (2013).

2.1 pppppp-value combinations

The two procedures presented in this section can be usedwith any (unit root) test for which
p-values pi, i = 1, . . . , N, are available which makes them more flexible than original
panel techniques like the method by Pesaran (2007) employed in the working paper by
Hassler and Werkmann (2012). Moreover, they can be applied to unbalanced panels
without modification, and their use of standard distributions is a further advantage.5

In this paper, we use the common augmented Dickey-Fuller (ADF) test6. Consider N
equations containing each T observations over time for each unit generated by an autore-
gressive model. In the simplest modeling framework each of these sequences is given by

	yi,t = μi + βiyi,t−1 +
ki∑
j=1

gi,j	yi,t−j + εi,t , i = 1, . . . ,N , (2.3)

where ki denotes the number of lagged changes included in the regression, which may
vary with the units. Furthermore, yi,0 is given, βi ≤ 0 and the errors εi,t are identically,
independently distributed (iid) across t with E(εi,t)=0, E(ε2i,t)=σ2

i <∞ and E(ε4i,t) < ∞.
The individual null hypothesis is as usual H0,i: βi = 0, and it is tested with the t-ratio
on βi. The null hypothesis that all the units have a unit root is given by the intersection:

H0 =
⋂

i=1, ...,N

H0,i .

Rejection of H0 does not imply that all units are stationary, and in particular, a rejection
does not identify the stationary units.
Choi (2001) suggests to apply the inverse normal method to independent panels which is
modified by Hartung (1999) to account for cross-correlation (see also Demetrescu et al.
2006). With the standard normal distribution function �(·), it involves the transforma-
tion and combination of p-values computed for N statistics. Hartung’s idea comprises
robustifying the inverse normal method against correlation under normality. He assumes
constant correlation across the cross-section units:

Cov(τi, τj) = ρ, for i �= j,

Cov(τi, τj) = 1, for i = j, i, j = 1, . . . ,N ,

5 Cf. Werkmann (2013) for a simulation study investigating the performance of p-value combinations
in an unbalanced panels setting.

6 An alternative choice would be the Phillips-Perron test which, however, is shown to be rather
conservative in some cases (see Hanck 2013).
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where the �−1(pi) =.. τi label the standard normal probits τ1, . . . , τN and where ρ is
consistently estimated by ρ̂∗ = max(−1/(N − 1), ρ̂) with

ρ̂ = 1 − 1
N − 1

N∑
i=1

⎛⎝τi − N−1
N∑
i=1

τi

⎞⎠2

.

The combined test statistic is given by

H =
∑N

i=1 �−1(pi)√
N + N(N − 1)

[
ρ̂∗ + κ

√
2

N+1 (1 − ρ̂∗)
] , (2.4)

where the parameter κ is introduced by Hartung (1999) for regulating the small sample
behavior of the test statistic. When applying the procedure to the interest rate differentials
in the study at hand, κ is 0.2 according toHartung (1999). The test statistic by Choi (2001)
under independence is obtained for ρ̂∗ = 0 and κ = 0. If ρ̂∗ is consistent as N −→ ∞
and a multivariate normal distribution of τ1, . . . , τN can be assumed, H

d−→ N (0, 1)

under the null hypothesis.
Examining the approach by Hartung (1999), Demetrescu et al. (2006) contribute three
aspects: First, they reveal that the test is robust to a wider class of correlation patterns
allowing for random correlation models, and they demonstrate experimentally that the
normal approximation of H is a valid guideline in finite samples without constant corre-
lation. Second, they provide a necessary and sufficient condition for limiting normality of
H and third, they perform a simulation study in which they show that the modified inverse
normal method can be sensibly applied to ADF tests in the presence of cross-correlation,
even for small N.
Modifying the Bonferroni inequality, Simes (1986) proposes the following procedure (S
test):

1. Compute the p-values pi, i = 1, . . . , N and arrange them from smallest to largest such
that p(1) ≤ · · · ≤ p(N).

2. Reject H0 at α if and only if there is at least one sufficiently small p-value p(j), such
that

p(j) ≤ j · α/N for some j = 1, . . . , N , (2.5)

where the pi are the p-values corresponding to the test statistics t1, . . . , tN. The adjusted
significance level j · α/N =.. α

[s]
j is also referred to as the cut-off value for the Simes test.

This inequality constrains the overall significance level α such that the probability of
rejecting at least one hypothesis in case that all are true does not exceed α, i.e. it controls
the FWER in the sense of (2.1) at significance level α under independence (the case of
independence is addressed below). In such a case, i.e. if FWER ≤ α for N true nulls, one
talks about controlling the FWER in the weak sense. Of course, it is more desirable that
a method controls the FWER for any possible configuration of true and false nulls which
is known as FWER control in the strong sense. Intuitively, Simes’ testing procedure seems
to be more informative regarding the (non)stationarity of the individual units than the
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inverse normal method as it examines separate p-values instead of combining them to
a joint test statistic; however, the S test does not protect the FWER in the strong sense
which renders test decisions with respect to the individual null hypotheses invalid. For
curing this drawback, Hommel (1988) proposes a multiple testing procedure based on
Simes’ inequality which makes it possible to detect the stationary units while preserving
(strong) FWER control at α (see Section 2.2).
The global Simes test relies on the following test statistic

S =
N∑
j=1

1{p(j)≤α
[s]
j } (2.6)

with 1{A} being the indicator of event A. The decision rule then reads: Reject the joint

null if S > 0, i.e. if at least one p-value is smaller than the adjusted significance level α
[s]
j .

Simes (1986) argues that the (global) S test achieves FWER control at α for independent
test statistics and uniformly distributed p-values on the interval [0, 1]. Naturally, in prac-
tice the assumption of independent units is often implausible. Sarkar and Chang (1997)
and Sarkar (1998), however, prove that this restriction can be relaxed considerably while
type I error control is maintained.7

The combination of p-values has recently been shown to perform favorably relative to
competing panel unit root tests by Hanck (2013).

2.2 Multiple testing

As mentioned above, the Simes test is a global testing procedure, i.e. it is not suitable
for testing the N null hypotheses individually. Hommel (1988: 384) argues that when
Simes’ method is used for conducting individual hypothesis tests, relying on (2.5) may
yield an overrejection of true null hypotheses in certain cases, i.e. type I error control
is not preserved for any combination of true and nontrue nulls in a panel. Thus, based
on the Simes inequality, Hommel (1988) suggests a multiple testing procedure8 which
allows for detecting the number as well as the identity of the significant null hypotheses
in a panel. Briefly, the algorithm can be summarized as follows:

1. If p(N) ≤ α, where p(N) is the largest p-value obtained from the test statistic on βi in
(2.3), reject all H0,i and terminate the algorithm.

2. Otherwise, compute

j[h] = max
{
i = 1, . . . ,N : p(N−i+k) > kα/i for k = 1, . . . , i

}
, (2.7)

and reject all H0,i with pi ≤ α/j[h] where α/j[h] =.. α[h].

7 More precisely, Sarkar (1998) shows that the test statistics have to be multivariate totally positive of
order 2 (MTP2). This condition is fulfilled for a rather large class of distributions, e.g. multivariate
normal distribution with nonnegative correlations (see Sarkar 1998, for a detailed definition of
the MTP2 property).

8 Also Hochberg (1988) suggests a multiple testing procedure built on Simes’ inequality. While the
Hochberg algorithm is somewhat less complicated and hence more popular with practitioners, it
is less powerful than Hommel’s method.
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This procedure can also be written down as a so-called step-up procedure which starts
with considering the least significant null (i.e. the one with the largest p-value). If a null
is not rejected, the procedure ‘steps up’ to the next smaller p-value until a particular null
hypothesis is rejected. Then, the remaining nulls are implicity rejected as well.9 Note that,
especially for small T, this procedure may underestimate the true fraction of stationary
units, cf. Hanck (2013).
In the next paragraphs, two joint multiple testing procedures are introduced. In contrast
to marginal multiple testing procedures, which often assume independence or a ‘worst
case’ dependence structure, these methods use resampling (here: bootstrap) techniques in
order to approximate the true dependence structure of the test statistics and are therefore
in general less conservative than the former. Moreover, the methods covered in the fol-
lowing directly use the test statistics ti which saves the user the computation of p-values.
Therefore, unlike the joint significance procedures in Section 2.1 and Hommel’s method,
they remain feasible even if one cannot obtain p-values for the underlying test. Romano
and Wolf (2005) recommend to employ studentized test statistics for several reasons;
principally, however, they argue that if the standard deviations of the test statistics are
not the same, one cannot readily compare basic test statistics to one another. Thus, for
both procedures, ti = β̂i/s.e.(β̂i), i = 1, . . . ,N. Furthermore, both methods are step-down
procedures, i.e. both consider the most significant (i.e. for a Dickey-Fuller test the most
negative) test statistic first and if the corresponding null is rejected they ‘step down’ to
the next larger test statistic; the algorithm continues in that way until no further null is
rejected. However, for both procedures assume without loss of generality that a particu-
lar null hypothesis is rejected for large positive values of the corresponding test statistic,
i.e. assume right-tailed hypothesis tests. We adopt this convention by multiplying the test
statistics ti of the original (left-tailed) ADF test by (−1). Hence, for both methods the
test statistics have to be arranged in descending order where the test statistic with the
largest value corresponds to the most significant null hypothesis.
The decision rule for the FWER controlling testing procedure byRomano andWolf (2005)
(RW procedure) is the following: Denote the ordered test statistics by tr1 ≥ · · · ≥ trN
where r1, . . . , rN denote the index of the ordered test statistics. Reject the 	R1 = R1−R0
(with R0 = 0) most significant null hypotheses H0,rn1

, n1 = 1, . . . ,R1, if it holds for the
associated test statistic trn1 that trn1 > d1 where d1 is a critical value chosen in such a way
that a joint asymptotic coverage probability of 1 − α of the following joint rectangular
confidence region is guaranteed:[

β̂r1 − s.e.(β̂r1) · d1, ∞)× · · · × [ β̂rN − s.e.(β̂rN ) · d1, ∞)
. (2.8)

Obviously, an equivalent decision rule is to reject a particular null H0,rn1
if 0 /∈[

trn1 −d1, ∞)
. If no null hypothesis is rejected, the algorithm stops; otherwise, construct

a second confidence region for the N − R1 remaining nulls with labels rR1+1, . . . , rN:[
β̂rR1+1 − s.e.(β̂rR1+1) · d2, ∞

)
× · · · × [ β̂rN − s.e.(β̂rN ) · d2, ∞)

, (2.9)

and reject the next 	R2 = R2 − R1 nulls H0,rn2
, n2 = R1 + 1, . . . ,R2 if trn2 > d2.

Repeat this procedure until no further hypotheses are rejected. Following Romano and
Wolf (2005), the critical value dk (where k denotes the number of steps until the algorithm

9 For a presentation of the algorithm as a step-wise decision rule see Dmitrienko et al. (2010).
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stops) should ideally be computed as the 1 − α quantile of the sampling distribution of

the maximum of
(

β̂ri
s.e.(β̂ri )

)
:

dk
..= dk(1 − α,P) = inf

{
x : Pr

{
max

Rk−1+1≤i≤N

(
β̂ri

s.e.(β̂ri)

)
≤ x

}
≥ 1 − α

}
,

where P is the true probability mechanism and Pr(A) is the probability of event A given P.
As P is not known in practice, it is infeasible to compute the ideal critical value. Hence,
P and thereby the critical values dk have to be approximated by means of a bootstrap
technique which can frequently be done consistently while preserving FWER control
(Romano/Wolf 2005, Theorems 3.1 and 4.1). The estimated probability mechanism and
critical values are then labelled P̂ and d̂k, respectively.
As before, for the procedure by Romano et al. (2008) (RSW procedure) the test statistics
are arranged in ascending order such that t(1) ≤ . . . ≤ t(N) where t(N) is the largest test
statistic which now corresponds to the most significant null hypothesisH0,(N). According
to Romano et al. (2008), for any step-down procedure the FDR is given as

FDR = E
[

V
max{R, 1}

]
=

∑
1≤r≤N

1
r
E
[
V|R = r

]
P
{
R = r

}
(2.10)

=
∑

1≤r≤N

1
r
E
[
V|R = r

]
×P
{
t(N) ≥ cN, . . . , t(N−r+1) ≥ cN−r+1, t(N−r) < cN−r

}
,

with V, R defined as stated above and r is the realization of R, i.e. the number of rejected
null hypotheses. As before, P denotes the true probability measure. The expression for
the FDR in (2.10) hinges on N0, the number of true null hypotheses. As N0 is unknown,
(2.10) should be bounded from above by α for every combination of true and false null
hypotheses. Romano et al. (2008) make use of this condition to compute the critical
values c1, . . . , cN through recursion. If, e.g. the number of true nulls is N0 = 1, (2.10)
is reduced to

FDR = 1
N
P
{
t1:1 ≥ c1

}
,

where tr:N0 labels the r-th largest test statistic of the N0 true nulls. This leads to the
determination of the first critical value as

c1 = inf

{
x ∈ R : 1

N
P{t1:1 ≥ x} ≤ α

}
,

with c1 = −∞ if Nα > 1. The remaining critical values cl, l = 2, . . . ,N, are computed
via additional steps of the recursion forN0 = l. As in the procedure by Romano andWolf
(2005), the true probability distribution P is not known in practice and hence, the critical
values from above are not readily obtainable. Rather, a resampling technique is called for
that allows for approximating the true probability measure via a bootstrap measure P̂.
Romano et al. (2008) point out that a valid construction of P̂ has to be conducted in such
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a fashion that, whenever H0,j is true, the associated test statistic tj is well approximated
by its bootstrapped counterpart t∗j . The associated critical values computed under P̂ are
then denoted by ĉj.
Of course, the choice of the bootstrap approach depends on the data. In the present
case of testing for international interest rate linkage, the appropriate bootstrap tech-
nique needs to satisfy two requirements: First, the unit roots (i.e. nonstationary data)
under the null hypothesis have to be taken into account and second, the dependence
structure of the countries has to be conserved such that meaningful inferences regarding
the (non)stationarity of the data can be made. In line with Deckers and Hanck (2013),
we employ the sieve bootstrap to address the issues quoted above:10 First, the bootstrap
technique generates asymptotically valid bootstrap augmented Dickey-Fuller test statis-
tics as shown by Chang and Park (2003) and Swensen (2003), i.e. when employing the
α quantile of the empirical distribution of bootstrap ADF test statistics as a critical value
for testing, one asymptotically obtains a procedure with size α. As the minimum mapping
is continuous, this also holds true for the empirical distribution of the minimum of the
bootstrap test statistics. Second, the empirical dependence structure between the units is
conserved by resampling entire residual vectors at one point in time t.
Hanck (2009a) provides experimental evidence that the sieve bootstrap is also able to
robustify a test against cross-unit cointegration in the sense that the size is controlled at
α and that the power is consistent compared to the case where cross-unit cointegration is
absent. An alternative to the sieve bootstrap would be the block bootstrap as employed
by Moon and Perron (2012).
Note that, apart from the two multiple testing procedures by Romano and Wolf (2005)
and Romano et al. (2008), also the Fisher-type test introduced in Section 2.1 is used as
a bootstrap version to make it robust against cross-correlation.11

3 Empirical results

3.1 International interest rate linkage revisited

Stability of international interest rate differentials is often considered as a necessary con-
dition for the uncovered interest parity (UIP) to hold. This is one reason why the interna-
tional interest rate linkage has been a sphere of interest in empirical research for a long
time. A lot of studies using interest rates with different maturities have been performed.
Some of the typically mixed evidence is reviewed in the following.
A survey on short-term interest rates is conducted by Cumby and Mishkin (1986) with
the general outcome that the evidence is neither favorable for all interest rate spreads
being stationary between the US and 7 OECD countries nor to the hypothesis that there
is no linkage at all.
Alexius (2001) argues that ‘‘before elevating the empirical failure of UIP to a stylized fact,
long[-term] interest rates should also be studied’’. Thus, she examines quarterly long-term
bond yields for 13 OECD countries and the US in a sample period beginning in 1957.Q1
to 1997.Q4. Her conclusion is that although being ‘‘tentative’’ due to data problems12,

10 A description of the bootstrap procedure can be found in the Appendix Section B.
11 Cf. Hanck (2009a).
12 Alexius (2001) points out two sources of possible measurement errors inherent in the data: 1)

Imperfect information about the maturities of the bonds and 2) coupon payments on long-term
government bonds.
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the results obtained may hint at the fact that UIP is a valid concept in the analysis of
long-term interest rates. Taking up this notion, Chinn and Meredith (2004) perform a
study on long and short-term interest rates using monthly and quarterly data for the G-7
countries from 1980 to 2000. They confirm the absence of an interest rate linkage over
short horizons as well as the finding by Alexius (2001) that the performance is more
favorable over long horizons.
Considering unit root and cointegration testing, Kirchgässner andWolters (1995) provide
evidence on a strong, while not total, German influence on the development in other
European countries using 3 month market rates for 7 European countries and the US for
periods from 1974 to 1994. Wolters (2002) and Brüggemann and Lütkepohl (2005) focus
on just two economies, the US and the Eurozone represented by Germany. Brüggemann
and Lütkepohl (2005) obtain results being supportive of a stable interest rate linkage
in long-term interest rates using monthly 10 year bond rates for the period 1985.01 to
2004.12. In contrast, Wolters (2002) finds no such evidence in a similar study based on
monthly data from 1994 to 2001; he argues that this may be due to an insufficient sample
size.
In the following section the results of the present empirical study are presented.

3.2 Joint significance results

International interest rate linkage is investigated using monthly data for short-term,
medium-term, and long-term interest rates for eleven OECD countries, i.e. government
bond yields with 3 months, 5 years and 10 years to maturity. The countries considered are
Australia (au), Canada (ca), Denmark (dk), Germany (de), Japan (jp), New Zealand (nz),
Norway (no), Sweden (se), Switzerland (ch), United Kingdom (uk) and the United States
(us). The sample starts in 1990.01 and ends in 2012.10 (T = 274 observations). More
detailed information on the data used can be found in the appendix. All test statistics and
p-values are computed for augmented Dickey-Fuller (ADF) regressions for which the lag
lengths are selected according to the modified Akaike information criterion (MAIC) with
a maximum lag length of 15 chosen with the data-dependent rule [12 · (T/100)0.25]. The
regressions contain intercepts but no linear trends. As stationarity of international inter-
est rate differentials is a necessary condition for the uncovered interest rate parity (UIP)
to hold true, we apply the tests discussed in the previous section to the panels of differen-
tials between 10 OECD countries and Germany and the US, respectively (N = 10). Our
choice of Germany as the reference country representing the Eurozone is motivated by
the fact that databases, e.g. Global Financial Data (GFD), also use German interest rates
as a proxy for Euro interest rate data. All p-values presented are according to MacKinnon
(1996).
When investigating international interest rate linkages, Kirchgässner and Wolters (1995)
found that Germany seems to influence the development of other countries in the short-
run. The US, however, seem to have ‘‘at best a very weak direct influence’’ (Kirchgässner/
Wolters 1995, Abstract).
First, consider the outcome obtained by the p-value combination procedures (see Tables 1
and 2). The bootstrap version of the Fisher-type panel test finds very conclusive evidence
of interest rate linkage at all conventional significance levels as well as for all bond matu-
rities for both, the panel of German differentials and the panel of US differentials. Har-
tung’s modification of the inverse normal method, however, confirms this unambiguous
result for the German panel only; regarding the US panel, Hartung’s test concludes that
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some evidence for stationary differentials can be found for medium and long-term yields
whereas for a short horizon, the OECD interest rates seem to be unattached to the US
rates. In view of these partly conflicting results, which test decision should we trust? To
begin with, keep in mind that although both procedures use individual p-values, they
are not considered separately when the test decision is made; they are rather combined
to one joint test statistic, i.e. both procedures might not be able to reject even though
there are stationary units in the panel. Hence, it needs to be contemplated under which
circumstances the procedures are able to detect sufficiently strong evidence of stationar-
ity for rejecting the joint null: From the p-value combination rules by Fisher (1954) and
by Hartung (1999) (see Section 2), one can infer that both testing procedures are most
powerful when there are many sufficiently small p-values, i.e. many false null hypothe-

Table 1 United States, p-value combinations

value of test statistic pppppp-value critical value
1% 5% 10%

10 year bonds

Fisher 48.914 0.000 41.810 31.797 27.374
Hartung −1.551 0.060 −2.326 −1.645 −1.282

5 year bonds

Fisher 46.143 0.005 42.883 33.507 28.797
Hartung −1.931 0.027 −2.326 −1.645 −1.282

3 month bonds

Fisher 38.232 0.010 36.856 29.079 26.260
Hartung −1.203 0.115 −2.326 −1.645 −1.282

Notes: For the procedure by Hartung (1999) p-values and critical values are taken from the standard normal
distribution. For the Fisher-type test p-values and critical values are obtained from the sieve bootstrap. Shading in
gray refers to critical values for which the corresponding joint unit root null is rejected.

Table 2 Germany, p-Value Combinations

value of test statistic pppppp-value critical value
1% 5% 10%

10 year bonds

Fisher 58.001 0.000 33.803 28.884 26.583
Hartung −2.659 0.004 −2.326 −1.645 −1.282

5 year bonds

Fisher 59.678 0.000 35.632 28.805 26.249
Hartung −4.802 0.000 −2.326 −1.645 −1.282

3 month bonds

Fisher 78.254 0.000 36.841 29.981 26.053
Hartung −3.064 0.001 −2.326 −1.645 −1.282

Notes: See Table 1.
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ses. However, Littell and Folks (1971) establish that the Fisher-type test is asymptotically
more powerful than the inverse normal method: One situation fulfilling these require-
ments is the test of a simple null hypothesis which coincides with the unit root null when
using the Dickey-Fuller test. Also, in a recent Monte Carlo study by Werkmann (2013),
it is shown that, when the underlying test is the ADF test, the Fisher-type test is more
powerful than the test by Hartung (1999) for almost every configuration of true and false
nulls considered.

Another argument in favor of the Fisher-type procedure would be the fact that the true
dependence structure of the test statistics is approximated via a bootstrap estimate. In
contrast to Hartung’s method, this approach works for any type of cross-sectional depen-
dence, hence it is more exact with respect to the true correlation pattern than the modified
inverse normal method when the true dependence structure is unknown.

3.3 Multiple comparison results

In Tables 3 and 4, multiple comparison results at the 5% significance level are displayed.
For results at the 1% and the 10% level the reader is referred to the online appendix at
www.jbnst.de/en.

Although the cut-off values for the Simes test are also collected in the tables presenting
the outcome of the multiple testing procedures, keep in mind that for this procedure one
may not reject the individual hypotheses for which the corresponding cut-off values are
highlighted if FWER control is to be maintained. The Simes procedure tests the global
null exclusively, i.e. if one or more cut-off(s) are shaded in gray, one can merely conclude
that the joint (unit root) null is rejected. Based on Simes’ inequality, the step-up procedure
by Hommel (1988) is able to indicate which of the individual differentials can be deemed
stationary. Hence, the results of these two methods are connected and will be reported
together. For the panel of US differentials, neither the Simes test nor Hommel’s method
finds any evidence of interest rate linkage to the US.

Considering the German panel, the Simes test rejects the panel unit root null only for
short-term rates at the 1% level; at 5% and 10%, the joint null can be rejected for all
maturities examined. The outcome of Hommel’s procedure, however, qualifies the Simes
result considerably: Only one to three (out of ten) individually stationary differentials
can be detected at these significance levels.

For both resampling-based procedures note that we report the values for the original ADF
test statistics in the tables, not those multiplied by −1. Having a look at the results for
these two methods, it is again obvious that there is at best very weak evidence in favor
of interest rate linkage between the ten OECD countries and the US: Solely for short-run
rates and at the 10% level both methods are able to reject the individual unit root null
for one country and two countries, respectively.

Regarding interest linkage to Germany (i.e. Eurozone), the RW procedure finds favor-
able evidence at the 10% level for long as well as medium and short maturity horizons.
This result is corroborated by the RSW procedure at both the 5% and the 10% level.
Clearly, the RSW procedure rejects the null hypotheses also deemed significant by the RW
procedure and in several cases, the former rejects more nulls than the latter. This is due
to the fact that multiple testing procedures controlling the FDR (as the RSW procedure
does) are able to detect more false null hypotheses, i.e. they are more powerful than the
ones controlling the FWER (see Section 2); however, this benefit comes at the cost of an
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Table 3 United States, Multiple Testing Procedures, 5% Significance Level

tjtjtjtjtjtj pjpjpjpjpjpj α
[s]
jα
[s]
jα
[s]
jα
[s]
jα
[s]
jα
[s]
j α[h]α[h]α[h]α[h]α[h]α[h] d̂k̂dk̂dk̂dk̂dk̂dk ĉĵcĵcĵcĵcĵcj

10 year bonds

uk −3.186 0.022 0.005 0.0050 −3.426 −3.429
nz −3.161 0.023 0.010 0.0050 −3.220
au −2.977 0.038 0.015 0.0050 −3.065
dk −2.728 0.071 0.020 0.0050 −2.923
se −2.683 0.078 0.025 0.0050 −2.781
no −2.655 0.083 0.030 0.0050 −2.669
ca −2.441 0.131 0.035 0.0050 −2.563
de −2.284 0.178 0.040 0.0050 −2.365
ch −2.163 0.221 0.045 0.0050 −2.180
jp −1.547 0.508 0.050 0.0050 −1.463

5 year bonds

nz −3.207 0.021 0.005 0.0050 −3.491 − 3.494
au −3.101 0.028 0.010 0.0050 − 3.271
no −2.854 0.052 0.015 0.0050 − 3.135
se −2.768 0.064 0.020 0.0050 − 2.991
dk −2.760 0.065 0.025 0.0050 − 2.821
ca −2.753 0.067 0.030 0.0050 − 2.712
uk −2.493 0.118 0.035 0.0050 − 2.532
de −2.106 0.242 0.040 0.0050 − 2.389
ch −1.544 0.510 0.045 0.0050 − 2.184
jp −0.925 0.779 0.050 0.0050 − 1.477

3 month bonds

nz −3.418 0.011 0.005 0.0050 −3.538 −3.541
ca −3.018 0.034 0.010 0.0050 −3.245
uk −2.626 0.089 0.015 0.0050 −3.017
de −2.296 0.174 0.020 0.0050 −2.869
au −2.151 0.225 0.025 0.0050 −2.748
no −2.141 0.229 0.030 0.0050 −2.588
jp −2.022 0.277 0.035 0.0050 −2.434
dk −1.895 0.335 0.040 0.0050 −2.317
se −1.878 0.342 0.045 0.0050 −2.097
ch −1.541 0.511 0.050 0.0050 −1.373

Notes: tj is the augmented Dickey-Fuller test statistic and pj is the corresponding p-value. α
[s]
j and α[h] denote the

cut-off values for the procedures by Simes (1986) and Hommel (1988), respectively. d̂k and ĉj label the critical
values computed for the left-tailed versions of the methods by Romano and Wolf (2005) and Romano et al.
(2008), respectively. Except for the Simes test, shading in gray refers to cut-off values or critical values for which
the corresponding individual unit root null is rejected. Hommel’s j[h] = 10 for all maturities.

increased probability of false rejections. Thus, it depends on the user’s conservativeness
which method he or she is willing to use.

Note that these two procedures approximate the true dependence structure of the test
statistics. Such resampling-based multiple testing procedures are hence in general more
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Table 4 Germany, Multiple Testing Procedures, 5% Significance Level

tjtjtjtjtjtj pjpjpjpjpjpj α
[s]
jα
[s]
jα
[s]
jα
[s]
jα
[s]
jα
[s]
j α[h]α[h]α[h]α[h]α[h]α[h] d̂k̂dk̂dk̂dk̂dk̂dk ĉĵcĵcĵcĵcĵcj

10 year bonds

au −4.137 0.001 0.005 0.0056 −3.501 −3.502
se −3.403 0.012 0.010 0.0056 −3.475 −3.239
no −3.281 0.017 0.015 0.0056 −3.033
ca −3.025 0.034 0.020 0.0056 −2.924
nz −2.964 0.040 0.025 0.0056 −2.797
uk −2.364 0.153 0.030 0.0056 −2.641
us −2.284 0.178 0.035 0.0056 −2.516
dk −2.016 0.280 0.040 0.0056 −2.329
ch −2.009 0.283 0.045 0.0056 −2.190
jp −1.663 0.449 0.050 0.0056 −1.492

5 year bonds

au −3.838 0.003 0.005 0.0063 −3.377 −3.379
se −3.628 0.006 0.010 0.0063 −3.377 −3.180
no −3.547 0.007 0.015 0.0063 −3.377 −3.040
nz −3.041 0.032 0.020 0.0063 −3.307 −2.897
ca −2.955 0.041 0.025 0.0063 −2.765
uk −2.934 0.043 0.030 0.0063 −2.658
ch −2.219 0.200 0.035 0.0063 −2.518
us −2.106 0.242 0.040 0.0063 −2.354
dk −1.749 0.405 0.045 0.0063 −2.129
jp −0.918 0.781 0.050 0.0063 −1.511

3 month bonds

ca −4.380 < 0.001 0.005 0.0063 −3.673 −3.674
ch −4.271 0.001 0.010 0.0063 −3.673 −3.339
uk −3.545 0.008 0.015 0.0063 −3.556 −3.060
dk −3.188 0.022 0.020 0.0063 −2.916
no −3.046 0.032 0.025 0.0063 −2.762
se −2.910 0.045 0.030 0.0063 −2.618
au −2.750 0.067 0.035 0.0063 −2.393
nz −2.685 0.078 0.040 0.0063 −2.283
us −2.296 0.174 0.045 0.0063 −2.018
jp −2.246 0.191 0.050 0.0063 −1.437

Notes: See Table 3. Hommel’s j[h] = 9 for 10 year bonds and j[h] = 8 for 5 year and 3 month bonds.

powerful than marginal multiple testing procedures like Hommel’s method which solely
makes use of the marginal distribution of the test statistics.

Interestingly, except for the RW procedure, the MTP outcome indicates that interest rate
linkage is stronger for medium to short horizons.

As expected, the application of multiple testing procedures leads to considerably fewer
rejections of the unit root null than when testing each time series separately at an unad-
justed significance level α. In particular for the US panel controlling for multiplicity makes



Dieses Dokument ist lizenziert für wiso-net, uM38201M.
Alle Rechte vorbehalten. © Jahrbücher für Nationalökonomie und Statistik.  Download vom 27.01.2015 09:37 von www.wiso-net.de.

38 · Uwe Hassler and Verena Werkmann

a substantial difference: Using the per comparison approach, one would (possibly spu-
riously) reject two and three null hypotheses at 5% for long and medium-term rates; at
10% significance, it would even be possible to make six more, maybe false discoveries.
Also, we examined the interest rates with respect to possible cointegration relationships.
For this purpose, we regress the OECD rates on the reference country and perform ADF
tests on the unrestricted residuals.Without imposing the (1, −1) restriction, we essentially
find the same results as obtained by unit root testing: There is strong evidence in favor
of a linkage to Germany (i.e. the Eurozone) while for the US almost no connection can
be detected.

4 Conclusion

The study at hand has analyzed the interest rate relation between 10 OECD countries
and Germany and the US using government bonds with different maturities in a sample
period from 1990.01 to 2012.10 employing p-value combinations and multiple testing
techniques. While the former provide information on the panel as a whole, the latter
enable us to identify the individual countries for which the interest rates are connected
while accounting for the multiplicity issue which is present when conducting individual
tests for each country in the panel. The probability of spurious rejections is explicitly
controlled (at a user-specified level).
For the US differentials mixed evidence is found. While the Fisher-type test reproduces
the results obtained for German differentials, the test by Hartung (1999) finds conclusive
evidence in favor of interest linkage only for medium-term maturities. The Simes test
and the multiple testing procedures rule out stationarity of the interest rate differentials
even more explicitly. The only exception from this result is the panel of short-term rate
differentials for which the procedures by Romano and Wolf (2005) and by Romano et
al. (2008), respectively, can reject the individual unit root null at the 10% level for New
Zealand, and New Zealand and Canada, respectively.
As intended, multiplicity control achieves fewer – possibly less spurious – rejections of
the unit root null than the per comparison approach.
Considering the results on German linkage, a different picture arises: Strong evidence in
favor of stationarity is found. Both, tests relying on the computation of individual or
combined significance levels and multiple testing procedures are indicative of stationary
relations between Germany and the OECD countries studied. The evidence is weaker
for bonds with long maturities. In particular, merely a weak linkage between the US
and Germany can be found. Therefore, the favorable results on German linkage and the
almost nonexistent linkage between the US and the other OECD countries does not result
in a contradiction. This insight is gained from the multiple testing procedures since they
enable the user to learn the exact identity of the differentials deemed (non)stationary.
Note that, prior to the introduction of the Euro, the European Exchange RateMechanism
(ERM) as a part of the European Monetary System (EMS) interconnected the exchange
rates of the EEC countries in order to preserve economic and social stability; more pre-
cisely, the exchange rates were forced to stay within a relatively tight band around the
European Currency Unit (ECU) also known as the ‘European Snake’. After the Euro was
introduced, the currencies outside the Eurozone have been linked to it, again for the bene-
fit of stability and to prepare them for their potential joining. The EU currencies currently
included are the Danish krone, the Lithuanian litas and the Latvian lats; other countries
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such as Poland and Romania are expected to join the mechanism in the near future. How-
ever, Sweden and the United Kingdom (which left the EMS in 1992) have preferred not
to participate in this mechanism. In our sample, this leaves the Danish krone as the only
currency linked to the Euro by exchange rate agreements. Thus, the outcome on German
or Eurozone linkage may, if at all, only slightly be affected by the ERM.

Appendix

A. Variables and data sources

In the study at hand, monthly data for the period 1990.01 to 2012.10 is used. Long and
short-term interest rates are obtained from OECD.StatExtracts. Medium-term interest
rates are taken from Global Financial Data (Series IGAUS5D, IGCAN5D, IGCHE5D,
IGDEU5D, IGDNK5D, IGJPN5D, IGNOR5D, IGNZL5D, IGSWE5D, IGGBR5D,
IGUSA5D). Monthly values are mostly arithmetic averages ‘‘relating to all days or spec-
ified days in the month’’. The rates labeled ‘‘10 year’’ are ‘‘long-term (in most cases
10 year) government bonds whose yield is is used as the representative ‘interest rate’ for
the respective country’’. For the rates named ‘‘5 year’’ benchmark bonds are used. Global
Financial Data states that ‘‘the benchmark bond is the bond that is closest to the stated
maturity without exceeding it. When the government issues a new bond of the stated
maturity, it replaces the bond used for the index to keep the maturity as close to the
stated time period as possible.’’. The rates denoted as ‘‘3 month’’ are short-term rates
and ‘‘usually either the three month interbank offer rate [. . . ] or the rate associated with
Treasury bills, Certificates of Deposit or comparable instruments, each of three month
maturity’’. For more detailed information on the data, see the webpage stats.oecd.org or
the GFD database, respectively.

B. The sieve bootstrap algorithm

The sieve bootstrap is employed for all procedures warranting a resampling procedure in
order to approximate the dependence structure across the units in the panel. An equally
adequate alternative would be the (overlapping) block bootstrap approach as used by
Moon and Perron (2012). Steps (1) to (5) included of the sieve bootstrap are the same for
the Fisher-type test as well as for the two joint resampling-based procedures by Romano
and Wolf (2005) and Romano et al. (2008), respectively. From (6) on, the steps differ
according to the testing procedure used.
According to Hanck (2009a) and Deckers and Hanck (2013), the bootstrap algorithm
takes the following steps:

(1) Fit an AR process to 	yi,t where yi,t denotes the interest rate differential between
country i and the US or Germany at month t, respectively. It is preferable to use
the Yule-Walker method since it always yields an autoregression which is invertible.
With 	yi

..= (T − 1)−1∑T
t=2 	yi,t, compute the empirical autocovariances of 	yi,t

up to order q which is chosen via the Schwert criterion [4 · (T/100)0.25]

γ̂i(j) ..= 1
T − 1 − j

T−j∑
t=2

(	yi,t−	yi)(	yi,t+j−	yi) , i = 1, . . . ,N , j = 1, . . . ,q .
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Let

�̂i
..=
⎛⎜⎝ γ̂i(0) · · · γ̂i(q − 1)

...
. . .

...

γ̂i(q − 1) · · · γ̂i(0)

⎞⎟⎠
and define γ̂i

..= (γ̂i(1), . . . , γ̂i(q))′ such that the autoregressive coefficient vector is
obtained as

(φ̂i,1, . . . , φ̂i,q)
′ ..= �̂−1

i,q γ̂i , i = 1, . . . ,N .

(2) The residuals are then defined as

ε̂i,t
..= 	yi,t −

q∑
l=1

φ̂i,l	yi,t−l .

Center the residuals

ε̃i,t
..= ε̂i,t − 1

T − q − 1

T∑
g=q+2

ε̂i,g .

(3) To obtain ε∗
i,t, resample nonparametrically from ε̃i,t. In order to maintain the empir-

ical dependence structure across the units i = 1, . . . ,N, resample complete vectors

ε̃•,t ..= (̃ε1,t, . . . , ε̃N,t)
′ .

(4) Then, construct the bootstrap samples recursively as

	y∗
i,t =

q∑
l=1

φ̂i,l	y∗
i,t−l + ε∗

i,t .

(5) Impose the null of a unit root by integrating 	y∗
i,t to obtain y∗

i,t.

(6) Compute the individual test statistics t∗b,i for each bootstrap sample.

a) Fisher-type test

Then compute the corresponding p-values and the joint test statistic F∗
b.

b) Romano and Wolf (2005)

Compute

min∗
b,k

..= min
Rk−1+1≤i≤N

t∗b,ri
.
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(7) Repeat steps (3) to (6) B times.

(8) a) Romano and Wolf (2005)

Compute the critical value d̂k as the α - quantile of the values min∗
1,k, . . . ,min∗

B,k.

b) Romano et al. (2008)

Compute the critical values ĉ1, . . . , ĉN by recursively solving the left-tailed ana-
logue of equation (7) in the paper by Romano et al. (2008) for the case that
N0 = N.

(9) a) Fisher-type test

Register a rejection of the joint unit root null if

B−1
B∑

b=1

1{F∗
b>F} < α ,

where 1{} denotes the indicator function.

b) Romano and Wolf (2005)

Compare the test statistics tj to the critical value d̂k and apply the RW step-down
decision rule described in Section 2.2. If no null can be rejected, stop. Otherwise,
follow the steps of the RW algorithm described in Section 2.2 and compute further
critical values.

c) Romano et al. (2008)

Compare the test statistics tj to the critical values ĉj and apply the RSW step-down
decision rule described in Section 2.2.
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